PD053

PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION

PI: Jian Hu MVSystems, Inc. May 16, 2013

Project ID # DE-FC36-07GO17105, A00

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Phase 1:

- Project start date: 9/1/2007
- Project end date: 12/31/2010 Passed go/no go evaluation in Nov, 2010

Phase 2:

- Project start date: 1/1/2011
- Project end date: 12/31/2012

No-cost extension: 1/1-9/30/2013

Budget

- Total project funding
 - DOE share: 2,543,415.65
 - MVSystems share: 628,952.40

Barriers

 Challenges for photoelectrochemical hydrogen production technologies:

- -Y: Materials Efficiency
- -Z: Materials Durability
- -AB: Bulk Materials Synthesis
- -AC: Device Configuration Designs

Partners

<u>Collaborators:</u>

Hawaii Natural Energy Institute (HNEI) National Renewable Energy Laboratory (NREL) University of Nevada at Las Vegas (UNLV)

• <u>Project Lead:</u> MVSystems, Inc.

Relevance - Objectives

Our goal: Develop a monolithic hybrid PEC device powered by MVS' lowcost a-Si-based tandem solar cell.

Project Objectives: (by the end of 9/30/13)

- Solar-to-hydrogen efficiency: 5%
- Durability: 500-hrs

Relevance - Milestones

	MaterialMaterial/DevicePhotocurrentDurability*		<u>Device Efficiency</u> <u>(STH)</u>	
Goal ->	4mA/cm ²	500hrs	5%	
Amorphous Silicon Carbide (a-SiC)	8mA/cm2	310hrs @ 1mA/cm ²	6.1%STH	
· · · ·	>100% Achieved	62% Achieved	>100% Achieved	
Tungsten Oxide (WO ₃)	3.6mA/cm ²	600hrs @ 1.5mA/cm ²	3.1%STH	
	90% Achieved	>>100% Achieved	62% Achieved	
I-III-VI ₂				
(Copper	20mA/cm ²	420hrs @ 4mA/cm ²	4.34%STH	
based)	>>100% Achieved	84% Achieved	87% Achieved	

* Test conditions in slide #26.

Relevance – Barriers

	a-SiC	Metal oxides	I-III-VI ₂ (Copper Chalcopyrite-based)	
AB: Synthesis	Entire PEC device fabricated with low-cost PECVD in a cluster tool identical to those used in PV industries.	Best performance achieved with conventional sputtering methods	CGSe films synthesized with co- evaporation methods. Synergy with PV industry (CIGSe)	
AC: Device design	Monolithic device	Hybrid PEC device concept demonstrated with mechanical stack	Hybrid PEC device concept demonstrated with co-planar PV/PEC	
- Achieved: - Barriers:	No barriers	Current deposition temperature requires innovative integration scheme	Current deposition temperature requires innovative integration scheme	
Z: Durability - Achieved: (so far tested)	310-hrs Need to test the durability at high photocurrent	600-hrs	420-hrs	
Y: Efficiency - Achieved:	6.10% STH efficiency	3.1% STH with pure WO ₃ (2.6 eV).	4.34% STH achieved with co- planar integration.	
- Barriers:	Need to modify surface to lower overpotential	Need to discover metal oxides with appropriate band-gap	Need to modify band alignment to lower onset potentials	

Approaches

Strategy for achieving STH efficiency > 5%

Basic view of PEC H₂ production:

Solar-to-hydrogen efficiency:

a-SiC: improve interface energetics and kinetics with appropriate surface treatment - <u>decrease overpotential</u>

Metal oxides: identify stable compounds with appropriate band gap (2.0-2.2 eV) - *improve transport properties with elemental doping*

I-III-VI₂: lower valence band edge via Cu and Se (partial) substitution
<u>decrease overpotentials and increase bandgap from 1.6 to 1.9 eV</u>

Amorphous Silicon Carbide (a-SiC)

Part II

Metal Oxide Compounds

Part III

I-III-VI₂ (Copper Chalcopyrite-based)

November 22, 2010

a-SiC: Cluster Tool PECVD/Sputtering System

Addressing "Synthesis"

All a-SiC films, photoelectrodes, solar cells and the PEC hybrid devices were fabricated in the cluster tool PECVD/Sputtering System, designed and manufactured by MVSystems, Inc.

Main deposition parameters:

RF power:	10-20 W
Excitation frequency:	13.56 MHz
Pressure:	300-550 mTorr
SiH₄ flow rate:	20 sccm
CH ₄ flow rate:	0-20 sccm
H ₂ flow rate:	0-100 sccm
Substrate temperature:	200°C

http://www.mvsystemsinc.com

chambers

Amorphous and/or nano-crystalline Si solar cells in conjunction with the photo-electrode as the driver for a-SiC, WO3 and I-III-VI₂ PEC.

Progress: Comparison with a Solid-State Configuration

STH efficiency of hybrid PV/a-SiC device should be >4% base on solid state version (right)
Low current in hybrid PV/a-SiC device (left)

Charge carrier extraction problem at the a-SiC/electrolyte interface

Progress: Surface modification by metal nanoparticles

(reported in 2011' & 2012' AMR meeting)

Potential shift ΔV for metals of different work functions

Metal	WF ϕ_m (eV)	ΔV* (V vs. SCE)	φ _{sc} ** (eV)
Pt/Au	5.4 (Pt)	-0.7~ -0.8	1.46 (Pt)
Pd/Au	5.6	-0.8~ -1.1	1.66
Ti	4.33	$0.2 \sim 0.4$	0.39
Ru	4.71	0.3~0.75	0.77
W	4.8	0.6	0.84

* Measured at current density of 2 mA/cm².

** ϕ_{sc} = ϕ_{m} - ϕ_{s} . (ϕ s from reported surface data)

<u>Progress</u>: Further improvement in surface energetics

Addressing "Efficiency"

New configuration: (X-cell pin/ aSi-pin/a-SiC pin)

Comparison of PEC performances:

(a-Si pin-pin/a-SiC pi vs X-cell/aSi/a-SiC pin)

Configuration	V _{fb} shift (V)	J _{ph} @0V (mA/cm ²)	STH efficiency (%)
a-Si PV/a-SiC p-i	0.45	2.0	2.46
X-cell/a-Si/a-SiC pin	1.0	4.9	6.10

Progress: Surface modification using W nanoparticles

Addressing "Efficiency"

Motivation:

- low work function: ~4.8 eV
- *much cheaper* than Ru

Part I

Amorphous Silicon Carbide (a-SiC)

Part II

Metal Oxide Compounds

I-III-VI₂ (Copper Chalcopyrite-based)

Progress: New metal oxides with E_G = 2.0-2.2eV

 $E_G=2.2eV$

550

CuWO

WO,

600

 $R_{c.t.} = 2,500 \ \Omega.cm^2$

2800

500

ο

О

2000

2400

CuWO₄ fabricated by spray-pyrolysis

Progress: New metal oxides with $E_G = 2.0 - 2.2 eV$

Addressing efficiency

Improving CuWO₄ transport properties with CNT

N. Gaillard, Int. J. Hydrogen Energ. 38, 3166 (2013)

Progress: New metal oxides with $E_G = 2.0 - 2.2 eV$

Addressing efficiency

Sextending tungstate material class to ABW₂O₈, A=Cu and B=Bi

Electronic structure calculated by Pr. Huda using Density Functional Theory

When compared to $CuWO_4$, $CuBiW_2O_8$ has:

1. no mid-gap bands: reduce charge trapping

2. more dispersive conduction band: lower effective mass

CuBiW₂O₈ should have a higher electrical conductivity than CuWO₄

Progress: New metal oxides with E_G = 2.0-2.2eV

Density functional theory (DFT)-driven material down-selection

Pellet density \approx 95% bulk density

Material	Synthesis		σ at R.T.	E _{activation}
	Method	Т	$(S.cm^{-1})$	(meV)
WO ₃	PVD	275°C	2.1×10 ⁻⁴	377
	SSR	1200°C	3.5×10 ⁻⁴	293
CuBiW ₂ O ₈	SSR	800°C	6.8×10 ⁻⁶	326
CuWO ₄	SSR	850°C	1.1×10 ⁻⁷	440

Clear improvement with introduction of Bi in CuWO₄: σ (CuBiW₂O₈)= σ (CuWO₄) x 100 Part I

Amorphous Silicon Carbide (a-SiC)

Part II

Metal Oxide Compounds

Part III

I-III-VI₂ (Copper Chalcopyrite-based)

Progress: synthesis of 2.0eV chalcopyrite

Addressing "Efficiency"

CuGaSe₂ baseline material

Demo: 3 aSi PV–CGSe PEC

Jsc: $3.5 \text{ mA}/\text{cm}^2 \rightarrow \text{STH: } 4.34\%$

A "non-precious" electro-catalyst rather than a photocatalyst...

Progress: synthesis of 2.0eV chalcopyrite

Addressing "Efficiency"

Method: sulfurization of CuIn_xGa_(1-x)Se₂

- Sample & sulfur sealed under argon
- 450-550°C for 1 to 10 minutes

Substitution of Se with S at surface (XPS) and bulk (EDX: [Se]<2%)

Progress: synthesis of 2.0eV chalcopyrite

Addressing "Efficiency"

- Chalcopyrites with Eg ranging from 1.1eV (selenides) to 2.5eV (sulfides) successfully fabricated,
- In/Ga ratio in sulfides adjusted to match 2.0eV Eg target,
- PEC tests show significant charge carriers generation.

Future work: low-cost efficient chalcogenides

Chemical synthesis of Cu₂ZnSnS₄

Microstructure

- Low-cost synthesis route for chalcogenide-based absorber developed,
- Single phase Cu₂ZnSnS₄ achieved,
- Method to be used to synthetized 2.0eV CIGS.

Durability test

a-SiC photoelectrode:

- Under AM1.5_G @1mA/cm², in pH2 buffer solution.
- No dark current increase for 310 hours

WO3 photoelectrode:

- Under AM1.5G @1.6V vs. SCE in pH2.
- High corrosion resistance of tungsten oxide in acidic solution for up to 600 hrs.

CGSe photoelectrode:

- Under AM1.5_G @1.7V (4mA/cm²), in 0.5M H_2SO_4 for 420 hours total
- Sealant and illumination issues may have led to degradation

Hybrid PV/a-SiC device after 310-hrs

[Data measured by NREL]

Five WO₃ samples after 600-hrs

CGSe₂ sample after 420-hrs

Collaborations

– US Department of Energy PEC working group: Leading task force on WO_3 ,I-III-VI₂ and a-SiC photoelectrodes

– *National Renewable Energy Laboratory*: collaboration to perform theoretical research and advanced morphological analysis of new materials.

- *University of Nevada at Las Vegas*: collaboration to analyze the surface energy band structure of new photoelectrode materials.

- University of Texas in Arlington: DFT calculation to establish new metal oxide.

- University of California in Santa Barbara: collaboration on surface treatment for catalytic purposes.

- Stanford University: collaboration on surface treatment for catalytic purposes.

- *Helmholtz Centre Berlin*: New alloy composition (sulfurization) fabrication, material/device theory

– *International Energy Agency/HIA/Annex* 26: collaboration with international institutes and universities including EMPA (Swiss) and University of Warsaw (Poland).

a-SiC photoelectrodes:

- STH demonstrated: 6.1%
- Durability achieved: 310 hours

> 100% Achieved

62% Achieved

Major achievement: decoupling energetics from kinetics

- Improve the PV cell and develop new surface treatments.
- Need to perform durability tests under working condition (i.e. @3mA/cm²).

Metal oxides photoelectrodes:

- STH demonstrated: 3.1%
- Durability achieved: 600 hours

Major achievement: DFT-driven metal oxide engineering

- Promising results with ternary metal tungstate
- New alloy identify via DFT: thin film synthesis on going

62% Achieved

> 100% Achieved

Project summary – Future work

Chalcopyrite photoelectrodes:

- STH demonstrated: 4.34%
- Durability achieved: 420 hours

Major achievement: synthesis of 'Red' (2.0eV) CIGS

- Develop low-cost (chemical) thin films synthesis
- Faradaic efficiency: 87%
- Durability: close collaboration with surface validation team

Lessons and recommendations

- Hybrid PV/PEC devices powered with low-cost a-Si solar cells work.
- Important work was done at solid-state level to improve devices efficiency.
- It is critical to decouple energetics from catalysis (Ru and W for PV/a-SiC cell are great example of this).
- Can not just go with "trial and error" approach (DFT was a great tool to improve oxides properties, as demonstrated with $CuWO_4$, $CuBiW_2O_8$).
- Improving durability will require input from PEC Working Group, especially the surface validation team (LLNL for theory, UNLV for advanced surface characterization...etc.)

Documents information

Main progress and results for this study (including all three thin film material classes will be described and documented in the final report at the end of this project.

Technical Back-up Slides

Progress : 500-hour durability tests

Test conditions:

- pH 2 Phosphate Buffer with 0.4M K2SO4& 2g/L Zonyl® FSN surfactant
- Under AM1.5G @1mA/cm²
- Without surface treatment

before testing

after 500 hours

J-V characteristics prior to and after 500hr test

- No major change in photocurrent
- But dark current increases

- a-SiC film is not corroded
- Localized defects may cause "shunts" in film

[Data measured by NREL]