

2013 Hydrogen Program

Annual Merit Review Meeting

Unitized Design for Home Refueling Appliance for Hydrogen Generation to 5,000 psi

Tim Norman (P.I.)

Monjid Hamdan

Giner Electrochemical Systems, LLC

May 15, 2013

Project ID# pd065

This presentation does not contain any proprietary or confidential information

Overview

Timeline

- Project Start: Aug 2010
- Project End: June 2013
- Percent Complete: 95

Budget

- Total Project Budget: \$999K
 - Funding Received in FY11: \$499K
 - Funding Received in FY12/13: 0K (Program Completely Funded)

Barriers

Hydrogen Generation by Water Electrolysis

- G. Capital Cost
- H. System Efficiency

Technical Targets: Based on Distributed Forecourt Water Electrolysis¹

Characteristics	Units	2015	2020	Giner Status (2013)
Hydrogen Levelized Cost ²	\$/kg-H ₂	3.90	<2.30	4.64
Electrolyzer Cap. Cost	\$/kg-H ₂	0.50	0.50	1.05
Stack Efficiency	%LHV (kWh/kg)	76 (44)	77 (43)	72 ³ (47) ³

¹2012 MYRDD Plan. ²Production Only. Utilizing H2A Ver.3 (Electric costs assumed to be \$0.069/kWh in 2015 case; \$0.037/kWh in 2020) . ³ Isothermal Compression at 5,000 psig adds ~5kWh/kg

Partners

- Prof. R. Zalosh Hydrogen Safety Codes
- IAS, Inc. System Controls Design
- 3M Fuel Cell Components Program (Manufacturer) NSTF Catalyst & Membrane
- Entegris Carbon Cell Separators
- DE-FC36-08GO18065 PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane

Relevance/Project Objectives

Overall Project Objectives

- Detail design & demonstrate subsystems for a unitized electrolyzer system for residential refueling at 5,000 psi to meet DOE targets for a home refueling appliance (HRA)
- Design and fabricate 5,000 psi electrolyzer stack
- Fabricate & demonstrate 5,000 psi system

Relevance

- Successfully developing a low-cost residential refueling appliance will enable early adoption of fuel cell vehicles
- Permit hydrogen generation at user end site
- Eliminate need for mechanical hydrogen compression

Impact

Successfully developing a low-cost residential refueling appliance will overcome barriers in capital cost via elimination of storage and compression

Approach: Overview

Membrane Evaluation	Electrolyzer Cell & Stack-Design	Prototype System
 Develop/evaluate high pressure, high strength membranes compatible with 5,000 psi operation Determine membrane voltage and faradaic efficiencies Engineer membrane properties lonomer's conductivity Membrane thickness & gas permeability Evaluate cathode-feed thermosiphon-based operation Enabling Technology: DSM TM DSM-PFSA ionomer incorporated into thermoplastic support	 Develop enabling Stack technologies for 5,000 psi operation Innovative designs to reduce Stack material costs Evaluate use of stack dome enclosure Anode membrane supports materials Cell Frames Thermoplastics (low-cost) vs. metal (higher strength) Cell frame stress analysis Reduce parts count/cell Carbon cathode support structures Multi functional part Eliminates 20+ component parts Enables high pressure operation Single piece separator Eliminates hydrogen embrittlement 	 Design/Develop/Test 5,000 psi prototype electrolyzer system Innovation required to overcome significant cost issues related to High-pressure components Phase separators Valves and pumps Take advantage of advances & developments on related Giner/DOE projects and system designs Improve safety and reliability Conduct safety analysis for high pressure hydrogen generators Demonstrate 5,000 psi operation

2012-13 Milestones

		Tasks	Progress Notes	% Complete
Membrane Evaluations	Task 1 & 3	 Membrane Evaluations Fabricate supported membranes for high- pressure operation DSM (Dimensionally Stable Membrane) Determine voltage and current (faradaic) efficiencies Establish models to determine optimal membrane and operating conditions 	 Completed fabrication of innovative membranes for high pressure operation DSM membranes exhibit high mechanical stability and improved performance under pressurized conditions Completed modeling based on membrane performance data Determined cost of compressing hydrogen directly in stack 	100%
Electrolyzer Cell & Stack-Design	lask 3 & 4	 Design, Build, and Test Electrolyzer Stack Utilize low-cost components in stack design Evaluate stack operation at 5,000 psig 	 High pressure stack design complete Reinforcement rings utilized to maintain low-cost stack design Multi-cell Stack Assembled (20 cells) Successfully pressure tested stack to 6250 psi (1.2X operating pressure) Successfully operated stack at 5,000 psig 	100%
		T2: Complete Detailed Analysis of Hydrogen Safety Codes and Standards	■Completed HAZOP/FMEA	100%
Prototype System	Task 2, 5-9	 T5:Design/Build/Test 5,000 psig H2-Dryer T6-T7: Design/Build PEM Electrolyzer HRA system T8:Demonstrate Performance and Durability of "Unitized" Breadboard HRA System T9:Preliminary Design and Economic Analysis of Commercial HRA System 	 System design completed and assembled System successfully operated at 5,000 psig Life test evaluations of system/stack at high pressure operation ongoing 	80%

Progress: Membrane Development

Enabling technology: DSM[™] Membranes

High-strength high-efficiency membranes

- Improved strength without adversely impacting conductivity
- No x-y dimensional changes upon wet/dry or freeze-thaw cycling
- Much Stronger Resistance to tear propagation
- □ Superior to PTFE-based supports

Improve MEA Mfg

GINER

- Ease of handling
- Direct catalyst inking onto membranes
- Low-cost, chemically-etched support

Improve Stack Seals

- Potential to bond support structures into bipolar frame to eliminate sealing issues
- Provide more support at edge regions and at ports

Customized MEAs for High Pressure

 Engineered membrane thicknesses to achieve highest voltage and faradaic efficiencies

Figure 1. Scanning Electron Microscope (SEM) micrograph of the polymer membrane support structure with definable straight hole pattern

Figure 2. Dynamic Mechanical Analysis (DMA) shows the increased tensile strength of the DSMTM versus its components (wet at 80°C)

Progress: Membrane: Faradaic Efficiency: Balanced vs. Differential Pressure Operation

Pressure vs. Diffusion (H₂/O₂ Cross-Over)

- Faradaic efficiency models created based on collected data
 - Significant gain in faradaic efficiencies in differential-pressure operating mode as a result of reduced gas cross-over

Progress: Membrane: Faradaic Efficiency:

Differential Pressure Operation & Temperature

GINER

- Faradaic Efficiency highly dependent on membrane thickness, operating pressure and temperature
- Gas diffusion losses are lower in differential-pressure operating
- Similar faradaic losses in PEM fuel cells and electrochemical H₂ compressors under same operating conditions & membrane selection

Stack Efficiency: High Pressure Operation

GINER

DSM Membrane Fabrication

- At high pressure operation (5000 psi), thicker membranes provide higher faradaic efficiency but lower voltage efficiency
- DSM membrane thickness of 7,10, 12, 20 mils (1100EW) fabricated
 - Low-cost, chemically-etched supports utilized in DSM fabrication
 - DSM exhibit higher compressive strength than Nafion[®] membrane of similar thickness
- Multi-cell electrolysis evaluation at 5,000 psi

9

Progress: Membrane: Voltage Efficiency: Evaluation and Optimization

GINER

Performance Scan, Multi-Cell Stack

Membrane testing conducted in finalized high-pressure stack hardware

Progress: Electrolyzer Cell/Stack Design

- Cell Frame analysis
 - Outer cell-frame hoop-stress and clamping force analysis complete
 - Cell frame designs include use of outer reinforcement ring
 - Eliminates Dome enclosure with improved cell frame design
 - Enables use of low-cost stack components
- Anode Support Structure
 - Fabricated advanced anode supports that enable
 - Lower Pressure Drop
 - Provide improved membrane support at pressures exceeding 6000 psi differential
- Cathode Support Structures
 - Multi functional part
 - Eliminates 20+ component parts
 - □ Enables high pressure operation
- Stack proof pressure tested to 6250 psig operating pressure
- Final stack assembly includes use of round fluid endplates

Evaluation Hardware

Cell-Frame Reinforcement Ring

Final Hardware (20-Cell Stack)

Challenges: Stack Operating Pressures

Generating Hydrogen at high pressure eliminates need for mechanical compressor

CSD Costs 2010 Refueling Station (2010 Technology)¹

¹http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/ fy13_budget_request_rollout.pdf 5,000 psi Multi-Cell Stack PEM-based Electrolyzer Stack

Hydrogen at 5,000 psig (Ambient O₂) Generated directly in PEM Electrolyzer

Stack Progress: Advancements & Cost Reductions

The repeating cell unit comprises >90% of electrolyzer stack cost

Stack Improvements Stack Cost Reductions

- Utilizing containment ring enables use of low-cost stack (see PD030 low-cost stack)
 - Reduced Part Count from 41 to 10 Parts/Cell-50% labor reduction
 - Pressure Pad: Sub-assembly eliminated
 - Molded Thermoplastic Cell Frames
 - Carbon/Ti Cell-Separators
 - DSM MEAs fabricated w/chemetch supports- 90% cost reduction
 - Stack designed to accommodate high multi-cell count (50 cells/stack)

Progress: System

System Assembly Completed

- P&ID, PFD, Control Diagrams
- Safety review complete
- Hydrogen-dryer analysis complete
- High efficiency BOP components selected

System Design Specifications				
Dimensions	Dimensions: 5.5' tall x 2.5' long x 2.5' wide			
Production Rate	Minimum: 41g H ₂ /hr (0.49 kg per 12 hour period) Maximum: 56g H ₂ /hr (0.67 kg per 12 hour period)			
Operating Pressure	H ₂ O to 5000 psig; O ₂ atm			
Operating Temperature	50-80°C			
Membrane	DSM-PFSA 7mil			
Stack spec	20 Cells Utilizes low cost stack components (See PD030)			
Stack Current Density	1200-1600 mA/cm ²			

Progress: System

- Adjustable operating pressure (up to 6,000 psig)
- Replaceable desiccant dryer
- No gas storage requirement
- Eliminated stack enclosure (Dome)
- Safety features include:
 - Cabinet ventilation. Electrical lockouts. Hydrogen detector. Over-pressure release. High temperature, and low/high cell voltage shut down. Flash arrestor.
- Blue tooth accessible
 - System can be controlled/monitored from 30ft distance

Stack Current Density **Hydrogen Production & Losses** Units 1200 1600 **Operating Range:** mA/cm² 1200-1600 mA/cm², 60°C mA/cm² 0.0597 Stack H₂-Production 0.0448 Permeation Losses Permeation Losses as percentage of product -0.0023 -0.0023Membrane permeation losses (@60°C) Efficiency kg-H₂/hr (-5.1%)(-3.8%)Phase-Separator (-0.14%) -0.0009-0.00130.0000 H₂-Dryer (desiccant dryer) 0.0000 **Total H₂-Production** 0.0416 0.0561 **Regenerative H2-Dryer not required for** 1200 1600 **Power Consumption** Units low flows. Two (2) replaceable mA/cm² mA/cm² desiccant columns used for drying . . **Electrolyzer Stack** 2.28 3.21 S S DC power supply & control (87% eff.) +0.286 +0.390 **Off-the-shelf** Ĩ Power Supply adds 6.9 kWh₂/kg-H₂ PLC Rack & sensors 0.05 0.05 0 kW_e Electrolyzer Water Pump 0.20 0.20 2 Heat exchanger fans 0.03 0.03 Ω H₂-Dryer 0.0 0.0 Permeation losses @ 5,000 psig & 60°C add: System Total Power Consumption (w/Dryer) 2.76 3.67 ∕5.1 kWh₂/kg-H₂ at 1200 mA/cm², (46.7 kWh₂/kg @ 0 psi) 3.8 kWh₂/kg-H₂ at 1600 mA/cm², (48.6 kWh₂/kg @ 0 psi) 1200 1600 **Overall Efficiencies** Units mA/cm² mA/cm² 52.2 Power Supply inefficiency adds ~7.0 kW_o/kgkWh_e/kg 51.8 **Electrolyzer Stack (includes permeation)** H₂ (State of the art @ 96% efficiencies can 66.3 65.4 reduce this to $\sim 2.0 \text{ kW}_{o}/\text{kg-H}_{2}$) System

Progress: Safety Codes Pertinent to Residential Hydrogen Refueling Systems

GINER

- Prof. Zalosh H₂ safety expert
- Reviewed National & International Codes & Standards
- Giner Contributes Comments to ISO/DIS 22734-2:2011
 - Defines the construction, safety and performance requirements of packaged hydrogen gas generation appliances
 - ISO 22734-2:2011 is applicable to hydrogen generators intended for indoor and outdoor residential use in sheltered areas, such as car-ports, garages, utility rooms and similar areas of a residence
 - Not Applicable to generators that supply Oxygen as a product

Projected H₂ Cost

Collaborations

Professor Robert Zalosh

- □ Vendor
- University
- Review of applicable codes and standards
- □ Assist with HAZOP/FMEA safety analysis
- IAS, Inc.
 - Vendor
 - □ For-profit company
 - □ Will develop low-cost controller prototypes
 - □ Will assist with control system development and projecting production costs
- GES, LLC (DOE Cost-Shared Grant DE-FC36-08GO18065)
 - Same Company
 - □ For-profit company
 - □ Within DOE H₂ program
 - Multiple overlapping components and subsystems [also Parker, 3-M (NSTF Catalyst & Membrane) and Entegris (Carbon Cell Separators)]
- GES, LLC (Government and Private Electrolyzer Development Programs)
 - Same Company
 - For-profit company
 - \Box Outside DOE H₂ program
 - Several NASA programs, one DARPA Prime Contractor, electrolyzers for several private companies

Proposed Future Work

Program Near Completion

Continue Stack/System life testing in current system

- Optimization studies
- Future considerations
 - Assemble and test 50-cell, 5,000 psig electrolyzer stack
 - Develop membranes with reduced permeability

Summary

Innovative Stack & System Design

- No compressors or gas storage required
- Reduces costs (capital, operating & maintenance)

Innovative High-Strength Low-Permeability Supported Membrane Required

- □ Advanced DSMTM
- Customized for 5,000 psi operation
 - Improved reliability & stability, safety, efficiency

Testing Progress

- □ 5,000 psig stack hardware assembly and evaluation complete
- "Unitized" Breadboard HRA System Design & Fabrication Complete
 5,000 psig Operation with 20-cell stack
- Hydrogen Costs Meet DOE Target of \$4/kg for H35 refueling. H70 refueling will required higher pressure stacks and system components