

High Performance, Low Cost Hydrogen Generation from Renewable Energy

P. I./Presenter Name: Dr. Katherine Ayers Organization: Proton Energy Systems Date: May 15, 2013

Project ID #PD071

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: Oct 2009
- Project End: Sept 2013
- Percent complete: 85%

Budget

- Total project funding
 - DOE share: \$3,396,826
 - Contractor share: \$849,206
- Funding for FY13
 - DOE share: \$181,272

Partners

- Entegris, Inc. (Industry)
- Penn State (Academic)
- Oak Ridge (National Lab)

Barriers

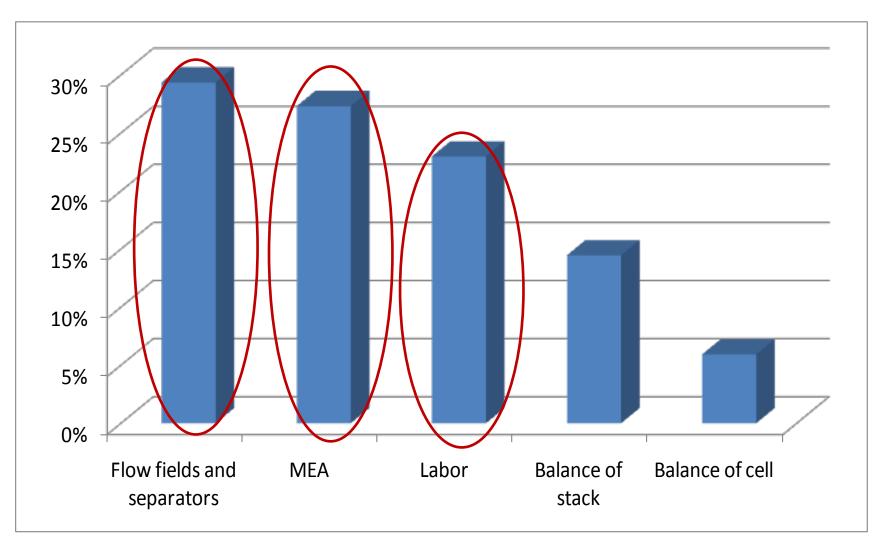
Barriers addressed
 G: Capital Cost

Table 3.1.5 Technical Targets: Central Water Electrolysis Using Green Electricity ^{a,b}					
Characteristics	Units	2011 Status °	2015 Target ^d	2020 Target ^e	
Hydrogen Levelized Cost (Plant Gate) ^f	\$/kg H ₂	4.10	3.00	2.00	
Total Capital Investment ^b	\$M	68	51	40	
System Energy Efficiency ^g	%	67	73	75	
	kWh/kg H2	50	46	44.7	
Stack Energy Efficiency ^h	%	74	76	78	
Stack Energy Eniciency	kWh/kg H ₂	45	44	43	
Electricity Price ¹	\$/kWh	From AEO '09	\$0.049	\$0.031	

Table 3.1.4 Source: DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Multi-Year Research, Development, and Demonstration Plan, Updated April 2009

Relevance: Project Objectives

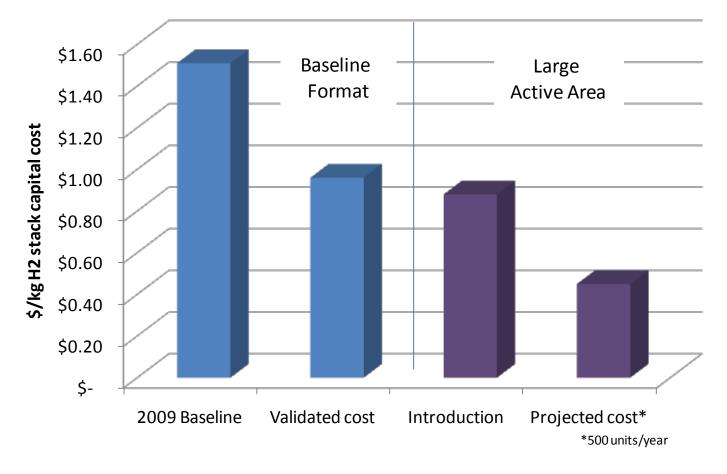
- Reduce cost in electrode fabrication
 - Reduction in precious metal content
- Improve electrolyzer cell stack manufacturability
 - Consolidation of components and reduction in labor
 - Reduction in titanium usage
- Stack active area scale up for MW platform
- Commercialization of technology advances


Scope

completed in

2011

Relevance


• Project addresses highest cost impact areas

Relevance: Cost Impact

- Combined labor and material advancements result in 40% production cell stack cost reduction
- Additional savings in stack scale up

Top Level Approach

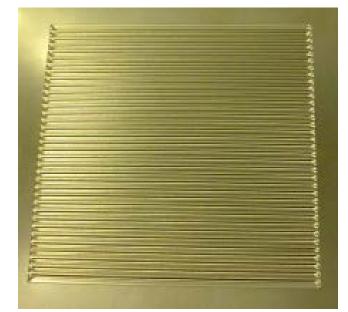
- Task 1.0: Catalyst Optimization
 - Control catalyst loading
 - Improve application
- Task 2.1: Computational Cell Model
 - Develop full model
 - Flex parameters, observe impact on

 performance
- Task 2.2: Implement New, Lower Cost Cell Design
 - Design and verify parts
 - Production release
- Task 2.3: Prototype Concepts
 - Test material compatibility
 - Fabricate test parts

- Task 2.4: Composite Bipolar Plates
 - Demonstrate functionality
- Task 3.0*: Low Cost Manufacturing
 - Laminate concepts
 - Alternate processes
- Task 4.0*: Operational Testing and Stack Scale Up
- Task 5.0: Manufacturing Development
- Task 6.0: Manufacturing
 Qualification
- Task 7.0*: H2A Cost Analysis
 - Input design parameters
 - Assess impact of changes

*blue = current review year activities

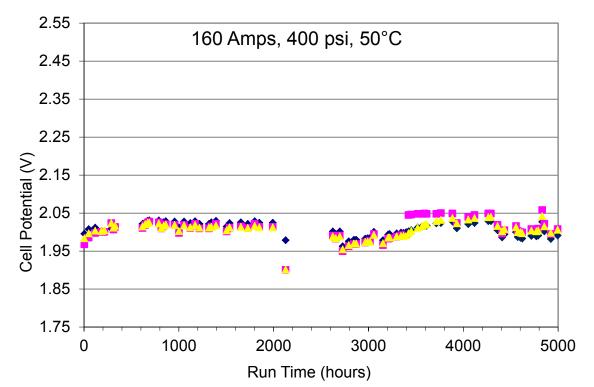
Progress on Milestones


Teels		Task Completion Date		
Task Number	Project Milestones	Original Planned	Percent Complete	
1	Catalyst Optimization	03/31/10	100%	
2.2	Improved Flowfield Implementation	05/30/10	100%	
2.1	Electrolyzer Cell Model	01/30/11	100%	
2.3	Next Generation Flowfield Prototypes	05/30/10	100%	
2.4	Metal-Composite Laminate Plate Fabrication	12/31/10	100%	
3.1	Metal-Composite Plate Development	12/30/11	100%	
3.2	All-Metal Laminate Plate Development	12/30/11	100%	
3.3	Hydrogen Resistant Coating Development	12/30/11	95%	
4.1	Sample Operational Tests	12/31/11	100%	
4.2	Post Operational Testing Analysis	03/30/12	80%	
4.3	Stack Scale Up	09/30/12	100%	
5	Bipolar Plate Manufacturing Development	06/30/13	75%	
6	Bipolar Plate Manufacturing Qualification	09/30/13	50%	
7	H2A Cost Model Analysis	09/30/13	80%	
8	Project Management	09/30/13	85%	

Technical Accomplishments: AMR 2012 Review

- Down-selected manufacturing pathway
 - Designed and validated subscale stack
 - Initiated active area scale up
- Evaluated alternative separator treatments
 - Verified reduced hydrogen uptake

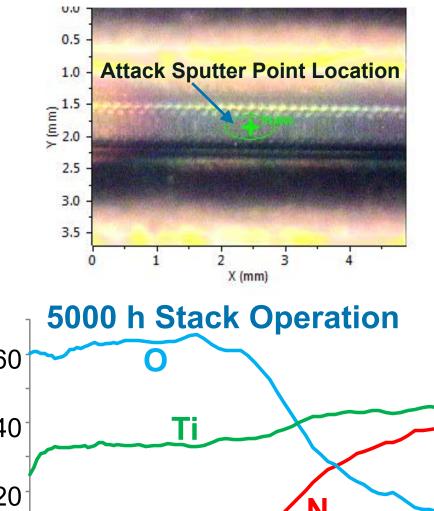
Conceptual part made with new manufacturing process/nitride coating

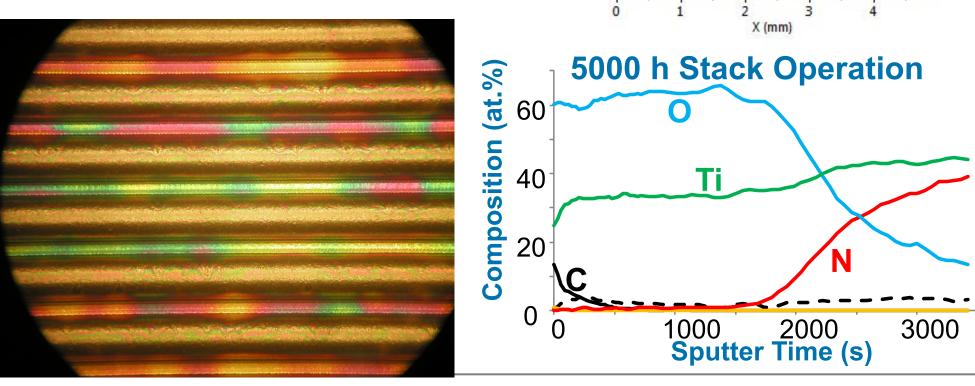


Technical Accomplishments: H₂ Protection

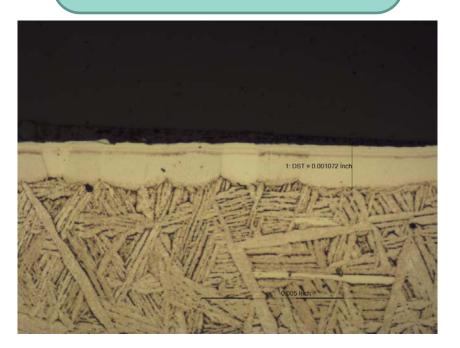
- Long term: alternate coatings for lower cost
- Short term: lessen part stress for lower uptake
 - Process order makes a difference
 - Impact seen on hydrogen uptake
- Implementation review passed March 2013

Process Step	Residual Stress (MPa)	Standard Deviation	$\begin{array}{c} 100\% \\ \underline{90\%} \\ 80\% \\ \underline{80\%} \\ 70\% \end{array} \xrightarrow{\bullet} Baseline \\ \underline{*} Post Annealed \end{array}$
Unprocessed	-134.2	10.1	- 70% - 5 60% -
Annealed only	15.3	9.1	40% -
Baseline process	-386.9	47.2	G 40% - 5 30% - 5 20% -
Annealed – Baseline	-383.7	58.4	20% - 10% -
Baseline – Annealed	30.3	29.0	
			0 100 200 300 400 5 Time (h)



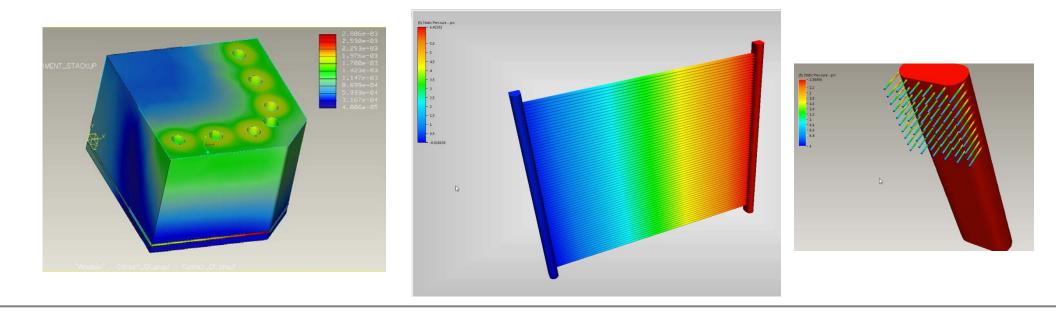

- 5000 hour validation achieved with no change in voltage
- 10-cell stack still on test with over 6000 hours

- **Operated parts showing** some oxidation
 - Not impacting cell voltage
 - Appears limited to channels


- Alternate methods of nitriding and alloys examined for manufacturability
 - -Degree of TiN/Ti₂N varies
 - -All show low uptake; some oxidation but no voltage impact

- Surveyed manufacturing methods for nitride coatings
 - Deposition methods are line of sight limited; batch size limited at large active area
 - Thermal methods provide more flexibility but can result in unwanted compositions
 - Preference for TiN vs. Ti₂N for higher corrosion potential
 - Worked to tune parameters with multiple suppliers

Thermal Gas 25 um thick Deposition 0.3-1.2 um thick


Technical Accomplishments: Scale Up

- Large active area format required re-design of flow features
 - Traditional channels would result in "oil-canning" during manufacture
- Investigated alternate flow geometries
- Developed novel solution with exceptional flow distribution while providing tortuosity to avoid long straight runs

Technical Accomplishments: Scale Up

- Design refinement of large active area stack
 - FEA of critical components: flow fields, frames, endplates
 - CFD of individual cells
 - Sensitivity analysis to flow rate variations
 - CFD of entire stack
 - Understand cell count impact on individual cell flow rate

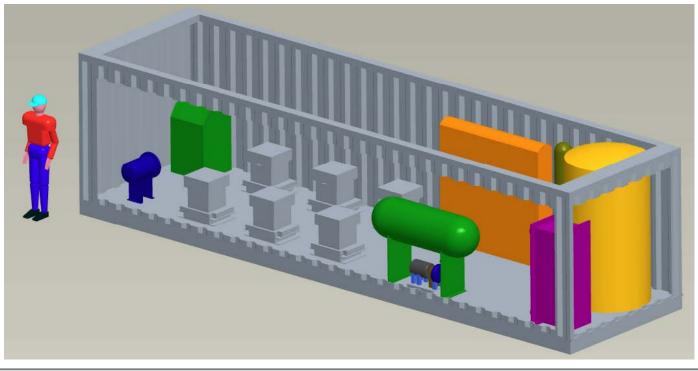
Technical Accomplishments: Scale Up

- Design for manufacturability
 - Frame orientation for error-proofing
 - GDL registration features for alignment
- GDL and separator load testing completed
 No deformation observed
- Frame testing completed with successful hydrostatic test to proof pressure of >700 psi

Technical Accomplishments: Manufacturing Development

- Proof of concept parts made by supplier
- Tooling initiated
- Material in house for production run

Existing large format stack; new design scaling to >50-cell design point, 20% increase in active area


Future Work

- Task 3.0 Continued characterization of coating stability with operational time and location
- Task 4.0 Complete design scale up and prototyping
 - First operational stack expected May 2013
- Task 5.0 Manufacturing process development
 Qualifying large active area components
- Task 6.0 Manufacturing qualification
 - Production run to follow prototype parts
- Task 7.0 Perform H2A analysis for end design

Support of Overall Electrolysis Pathways

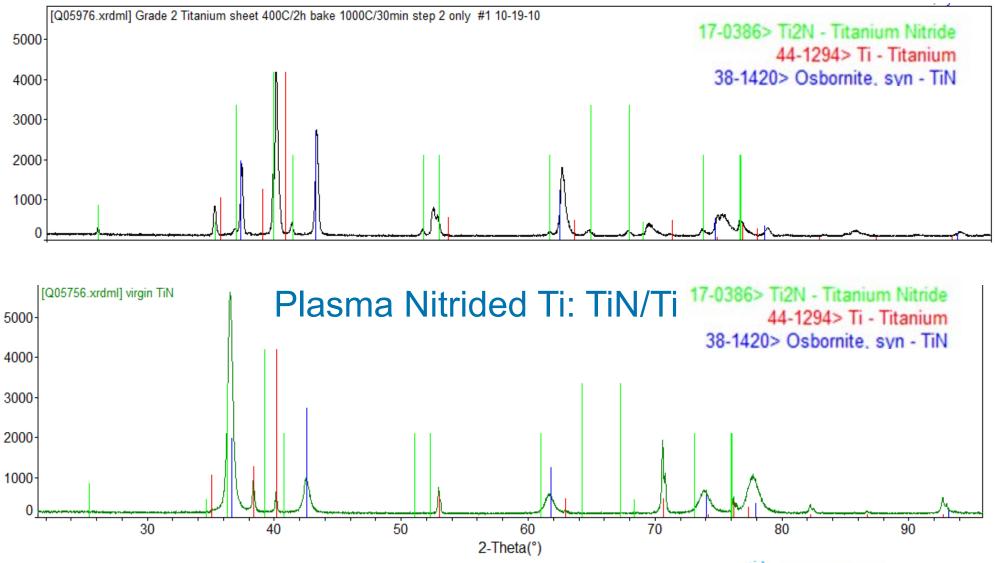
- Program forms basis of MW development effort
 Needed for energy storage applications
- Part of overall technology roadmap
 - Synergistic with other programs

Summary

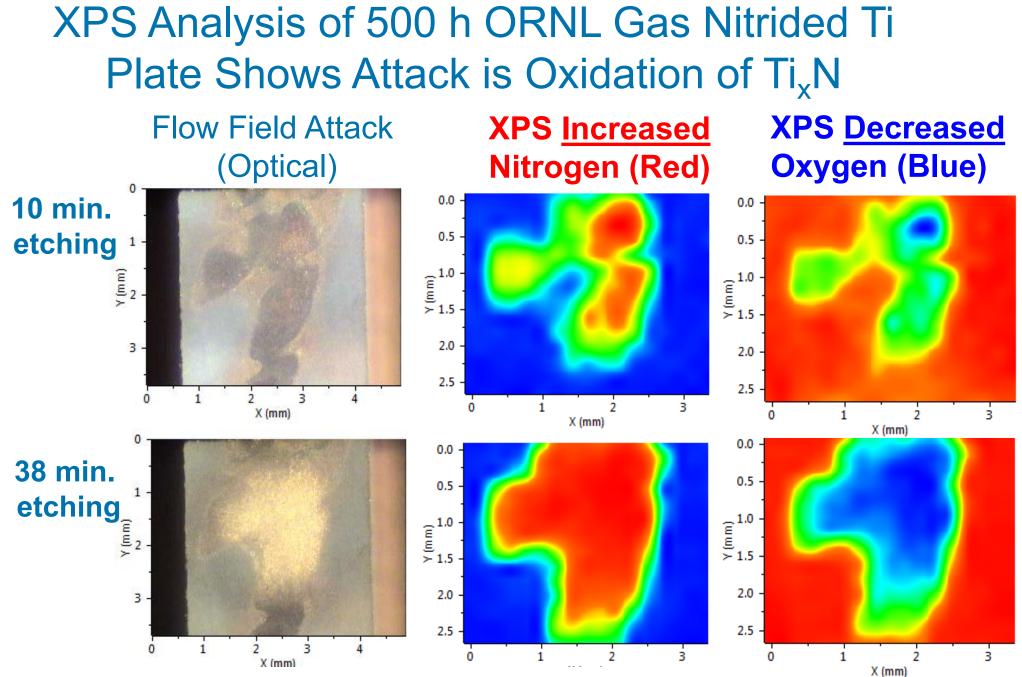
- Relevance: Cost savings at the electrolyzer cell level directly impacts hydrogen production costs
- Approach: Reduce cost of largest contributors first
- Technical Accomplishments:
 - Flowfield: Phase 1B design passed technical review, prototype on test; project 40% stack cost savings
- Collaborations:
 - Cell Model: Leveraging learnings for scale up
 - Entegris: Concepts show good durability, incorporated into design
 - ORNL: Providing detailed materials understanding for predictability of long term stability
- Proposed Future Work:
 - Scale up and manufacturing development

Team

- Blake Carter
- Luke Dalton
- Rachel Wax
- Andy Roemer
- Mike Niedzwiecki
- Tom Mancino (Entegris)
- Mike Brady (ORNL)
- Todd Toops (ORNL)



Supplemental Slides



XRD Indicates Thicker, More Exclusive TiN on Plasma Nitrided Matrial

ORNL Gas Nitrided Ti: TiN/Ti₂N/Ti

Etching reveals nitride under oxide Oxidation resulted in only minor effect on plate performance

