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Overview 

• Project start date: October, 2006 
• Project end date: September, 2014 

(Pending DOE approval) 
• Percent complete: 85 

• Barriers addressed: 
 - AP. Materials efficiency 
 - AQ. Materials durability 
 - AR. Bulk material synthesis 
 - AS. Device configuration and       
         scale up   

• Total project funding: $ 3,650 K 
– DOE share: $ 2,970 K 
– Contractor share: $ 680 K 

• Funding for FY06: $ 2,970 K 

Timeline 

Budget 

Barriers 

Partners 

• National Renewable Energy    
  Laboratory 
• University of Arkansas at Little   
  Rock 
• University of Nevada Las Vegas 

(pending DOE approval) 
 



Objectives 

Overall  Develop high efficiency hybrid-semiconductor nanotubular materials for 
hydrogen generation by water splitting 

2006-2007 • Develop new anodization techniques to synthesize high quality and    
  robust titanium dioxide (TiO2) nanotubes with wide range of nanotubular architectures 
• Understand kinetics and formation mechanism of the TiO2 nanotubes under different              
synthesis conditions 

2007-2008 
 
 
 
2008-2009 
 
 
 
2009-2010 
 
2010-2011 
 
2011-2012 
 
2012-2013 
 

• Develop organic-inorganic hybrid photo-anodes 
• Develop multi-junction photoanodes 
• Develop cost-effective cathode materials 
 
• Develop mixed metal oxide nanotubular photoanodes 
• Develop multi-junction photoanodes 
• Design PEC systems for on-field testing under real solar irradiation 
 
• Develop semiconductors which absorb in the visible region of  the solar spectrum 
 
• Develop visible light sensitive ferroelectric BiFeO3 photoanodes based on DFT modeling 
 
• Synthesis of titania nanotubes in mixed acid electrolytes to dope transitional metals  
 
• Enhance visible light absorption of metal oxide nanotubes 
• Develop new synthesis techniques for enhanced photoelectrochemical performance 
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Approach 

Task A. Synthesis and fabrication of photocatalysts  
 
• Increase visible light utility of metal oxide nanotubes by  
• Examine new synthesis techniques 

• Effect of surface treatment and effect of light irradiation during synthesis 
• Characterization and fundamental understanding of the materials prepared 
 

Task B. Application of the nanotubular materials for photoelectrochemical   
generation  

              of H2 from Water 
 
• Evaluate photoelectrochemical  behavior of nanotubular oxide composite photoanodes 
   
                             
Task C. Materials stability of hybrid oxide nanotubular photo-anodes 
   
• Electrochemical methods 
• Spectroscopic and Electron Microscopic analysis 
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Improved Visible Light Absorbance of TaON Nanotubes 
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Ta2O5: annealed in air at 500 oC 2h 
 
Ta2O5-H: annealed in N2/H2  
(95/5 mol) 500 oC 2h 

TaON: annealed in NH3 at 700 oC 2h 
 
TaON-H: Ta2O5-H annealed in NH3 
at 700 oC 2h 
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Improved Visible Light Absorbance of TaON Nanotubes 

• Reduction in band gap of TaON-H due to N 2p 
states in valance band 

• Improvement in visible light absorption due to 
synergistic interaction between sub-
stoichiometric Ta and Nδ- 2p [2]  

Ta5+ 3d 

N 2p 
O 2p 

Nδ- 2p 

H2 

Ta5+ 3d 

O 2p 

Sub-stoichiometric  
Ta5+ states 

Energy 

[2] J Am Chem Soc, 2012, 134, 3659 
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New Approach to Synthesize Hierarchical TiO2 
Nanotubes (NTs) 

Hierarchical TiO2 NTs demonstrate higher photoelectrochemical 
performance over plain TiO2. Current synthesis of these nanostructures 
requires a two-step anodization process (A) 

The same top-layered type nanostructure can be obtain by a single 
anodization process (B) utilizing a surface etching treatment prior to 
anodization 

Etch solution: 
HF (35 %) 
HNO3 (68-70%) 
DI H2O 
1:3:50 ml, respectively 
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New Approach to Synthesize Hierarchical TiO2 
Nanotubes (NTs) 

10 μm 

500 nm 

SEM of Ti surface after etching treatment. The 
inset shows the surface morphology after 
anodization at 40 V for 1h. The etching 
treatment results in the formation of a thin 
nano-porous layer on top of the TiO2 
nanotubes  

SEM TiO2 NTs formed at 40 V for 1 h in 
an ethylene glycol solution (10 wt% H2O 
+ 0.5 wt% NH4F without any surface 
treatment prior to anodization 
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New Approach to Synthesize Hierarchical TiO2 
Nanotubes (NTs) 

(a) (b) 

(c) (d) 

(a) Hierarchical TiO2 
NT (b-d) TiO2 NTs 
with a nanograss 
top layer. This type 
of architecture is 
obtained by 
increasing the 
anodization bath 
temperature. 
Temperatures of 
(b)40 oC, (c) 50 oC, 
and (d) 65 oC were 
examined. 
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Hierarchical, Nangrass and Plain TiO2 Nanotubes 
Photoelectrochemical Performance 

AM 1.5 irradiation (100 mW cm-2) in 1 M KOH with a Pt mesh cathode. 

The increased performance of H-T-NT and N-T-NT 40 can be attributed to an 
increase in surface area for light harvesting and electrolyte interaction sites. 
The addition of a thin top layer can increase the workfunction over plain TiO2 
NT [3]. Too thick of a layer (eg N-T-NT 50) results in increases electron-hole 
recombination  

[3] J Phys Chem C 113 (2009) 12759  
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Light-Assisted Anodized TiO2 Nanotubes (NTs) for 
Enhanced Photoelectrochemical Peformance 

• Photoelectrochemical etching (PEC-E) has 
shown to enhance the photoelectrochemical 
performance of rutile titania [4] 

• Can potentially affect nanotube formation 
morphology 

[4] J. Electroanal. Chem. 1995, 396, 35 
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Light-Assisted Anodized TiO2 Nanotubes (NTs) for 
Enhanced Photoelectrochemical Peformance 

Top View Side View 
Plain TiO2 NTs (T-NTA) 
60 V, 1h 
Ethylene glycol electrolyte 
(10 wt% H2O + 0.5 wt% NH4F) 
annealed in N2/H2 (95/5 mol) at 
500 oC for 2h. 
 
T-NTA-30 
Anodized 30 min. without light 
Anodized 30 min. with light 

T-NTA-60 
Anodized 60 min. with light 

ACS Appl Mater Interfaces (2012), 4, 5883 
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Light-Assisted Anodized TiO2 Nanotubes (NTs) for 
Enhanced Photoelectrochemical Peformance 

•Increase in carbon doping and sub-
stoichiometric Ti4+ when anodized with light 
 

•Increased visible light absorbance 
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Light-Assisted Anodized TiO2 Nanotubes (NTs) for 
Enhanced Photoelectrochemical Peformance 

Photoelectrochemical testing: 1.5 AM irradiation (100 mW 
cm-2) in 1 M KOH with a Pt coil cathode and Ag/AgCl (3 M) 
reference electrode. (A) Potentiodynamic plot and (B) 
Potentiostatic plot with intermittent irradiation at 1.5 V RHE 
(0.5 V vs Ag/AgCl) 



15 

Light-Assisted Anodized TiO2 Nanotubes (NTs) for 
Enhanced Photoelectrochemical Peformance 

Mott-Schottky Analysis: AM 1.5 irradiation at a 
frequency of 1 kHz with an AC imposed bias of 
10 mV in 1 M KOH. 

Increase in flat-band 
potential as well as an 
increase in charge carrier 
density from 1016 to 1018 
cm-3 account for enhanced 
photoelectrochemical 
performance 
 
Greater band bending from 
thicker NT geometry allows 
for increased charge 
separation 
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 Relevance: Develop a stable and efficient photoelectrochemical cell for solar hydrogen 
generation by water splitting 

 Approach: Synthesize visible light sensitive hybrid nanotube arrays as photoanode 
material through combinatorial approach 

 Technical accomplishments and process: Developed a method to extend the visible 
light absorbance of TaON nanotubes. Developed new synthesis techniques for higher 
order 1D titania nanotube architectures which demonstrate enhanced 
photoelectrochemical water splitting. 

 Proposed future research: (a) Synthesize photoanodes that can harvest the full 
spectrum of sunlight, (b) theoretical investigation on the materials synthesized (c) 
scale-up the PEC system, and (d) on-field testing under real solar irradiation. 

Summary 
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