

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Economical Production of Hydrogen through Development of Novel, High Efficiency Electrocatalysts for Alkaline Membrane Electrolysis

Presenter: Dr. Katherine Ayers

Organization: Proton OnSite

Date: May 15, 2013

Project ID: PD094

Overview

Timeline

Project Start: 20 Feb 2012

Project End: 19 Nov 2012

Percent complete: 100%

(Phase II pending)

Budget

Total project funding

– DOE share: \$1,150,000

Funding for FY13

DOE share: \$500,000 (pending)

Barriers

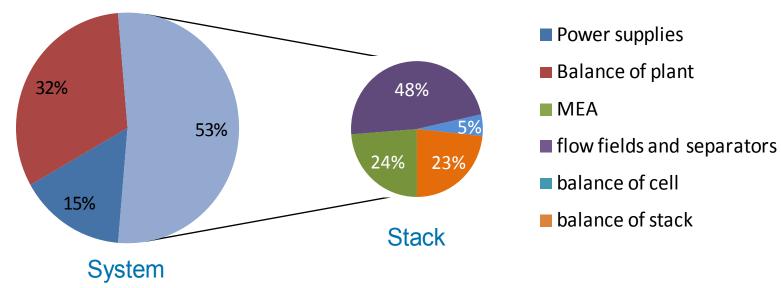
Barriers addressed

G: Capital Cost

Table 3.1.5 Technical Targets: Central Water Electrolysis Using Green Electricity ^{a,b}							
Characteristics	Units	2011 Status ^c	2015 Target ^d	2020 Target ^e			
Hydrogen Levelized Cost (Plant Gate) f	\$/kg H ₂	4.10	3.00	2.00			
Total Capital Investment ^b	\$M	68	51	40			
System Energy Efficiency ^g	%	67	73	75			
System Energy Emiciency 3	kWh/kg H ₂	50	46	44.7			
Stack Energy Efficiency h	%	74	76	78			
Stack chargy chiciently	kWh/kg H ₂	45	44	43			
Electricity Price i	\$/kWh	From AEO '09	\$0.049	\$0.031			

Partners

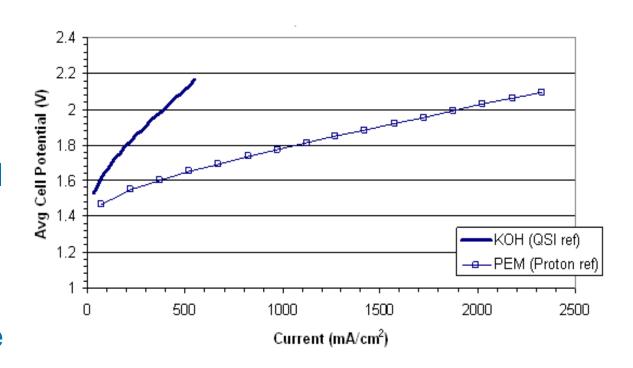
Illinois Institute of Technology


Relevance: Project Objectives

- Demonstrate high activity of pyrochlore catalysts for oxygen evolution
- Optimize catalyst composition and microstructure
- Form and characterize new anion exchange membranes and demonstrate acceptable conductivity for electrolysis
- Process promising membrane and catalyst materials into MEAs
- Scale up to a relevant stack active area and height and operate in a relevant environment.

Relevance: Cost

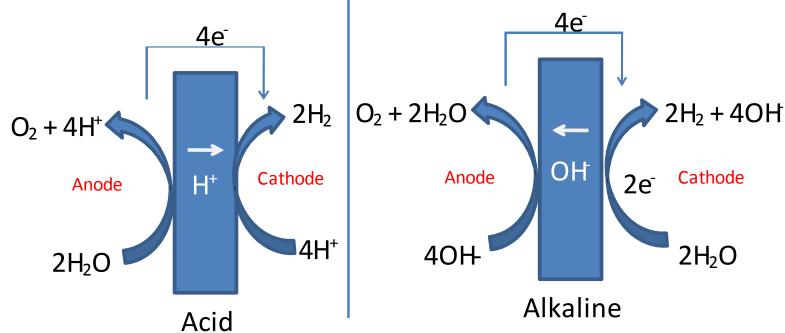
 Metal flow fields and separators represent almost half of stack cost



- Alkaline media enables transition from titanium to stainless steel: eliminates 75% of part cost
- Also enables less expensive catalysts

Relevance: Efficiency

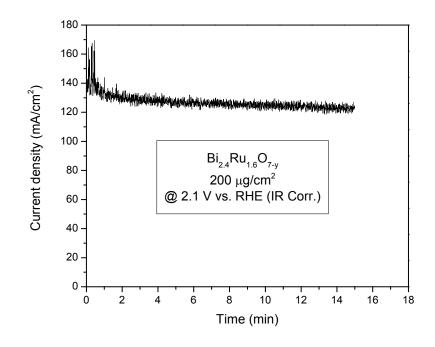
- Liquid KOH electrolyte systems much less efficient than membranebased systems
- Expect AEM hybrid to fall between existing technologies
- Advanced catalysts and membranes help to close gap



Top Level Approach

- Task 1.0 Catalyst Development
 - 1.1 Catalyst Synthesis
 - 1.2 Catalyst Characterization
- Task 2.0 Membrane Development
 - 2.1 Membrane Synthesis
 - 2.2 Membrane Characterization
- Task 3.0 MEA Testing
 - 3.1 Manufacturing Development
 - 3.2 Electrochemical Characterization
 - 3.2 Post Operational Assessment
- Task 4.0 Program Management

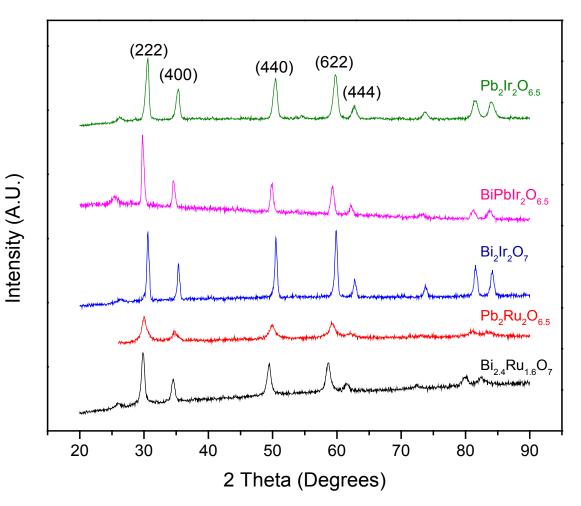
Approach



- Water management is a key consideration in determining operating point
- Phase separation easier with anode feed
- ARPA-E work shows 500 mA/cm² achievable with no water mass transport issues

Approach

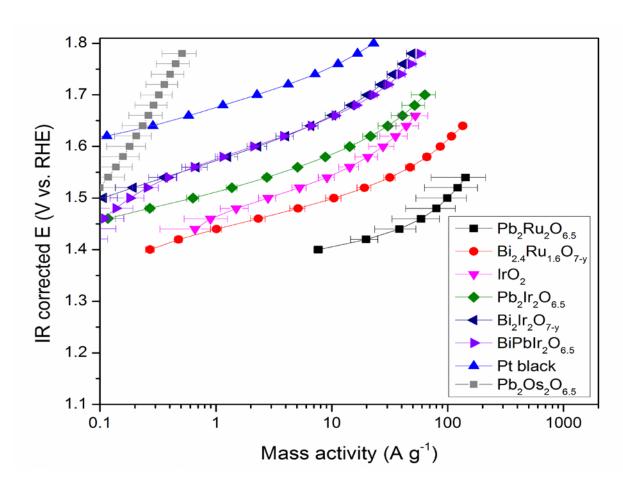
- Leverage pyrochlore class of catalysts (A₂B₂O₆₋₇)
 - Good kinetics for OER
 - Stable in base
 - Able to make as nanoparticles
- Investigate compounds with A = Bi, Pb; B = Ru, Ir



Technical Accomplishments: Phase 1

Task	Task Description	Progress Notes	Completion
1.0	Catalyst Development	Synthesized desired pyrochlores and proved structure with XRD	100%
2.0	Membrane Development	 Focused on development of Tokuyama for catalyst screening Investigated 2 additional polysulfone derivatives 	100%
3.0	MEA testing	 Process trials completed for improved electrode adhesion and stability Cells tested for up to 200 hours 	100%
4.0	Program Management	 Project reporting completed Phase II proposal completed with internal funds 	100%

Technical Accomplishments: Synthesis


Catalyst	B.E.T. surface area (m²/g)	Electronic conductivity S/cm
Pb ₂ Ru ₂ O _{6.5}	99±4	87
$Bi_{2.4}Ru_{1.6}O_7$	7.8 ± 0.2	63
$Pb_2Ir_2O_{6.5}$	1.2 ± 0.1	73±7
$Bi_2Ir_2O_7$	0.4 ± 0.1	56±6
BiPbIr ₂ O _{6.5}	0.4 ± 0.1	75±7
Pb ₂ Os ₂ O _{6.5}	0.8 ± 0.3	

- Desired compositions successfully made
- Surface area of some compositions still low

Technical Accomplishments: Bench Tests

Mass activity shows good promise even with some catalysts at 10% desired surface area

Technical Accomplishments: Electrode and Cell Fabrication

 GDE approach leveraged to mitigate stress on membrane

Anode GDL

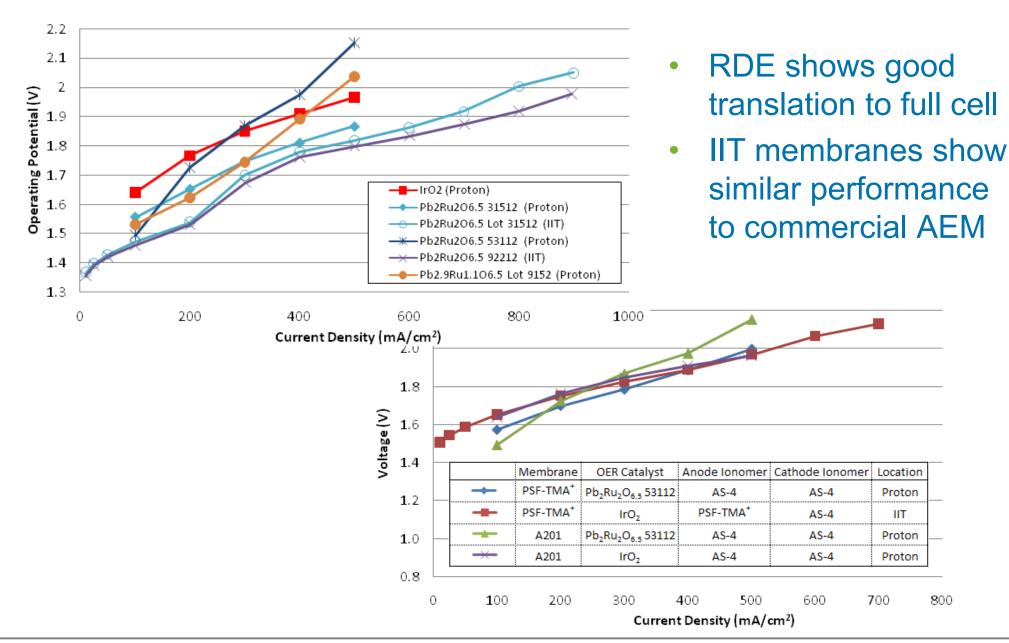
Anode Catalyst

Anode Catalyst

Membrane

Cathode Catalyst

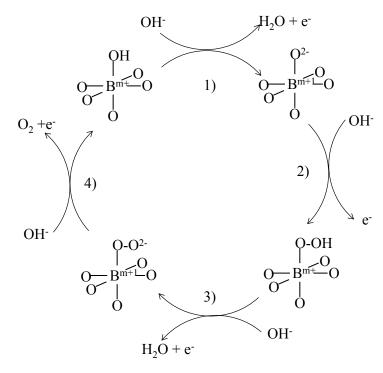
Cathode GDL


Cathode GDL

Cathode GDL

- Ionomer formulation and technique leveraged from ARPA-E program
- Cell design modified for thinner/stiffer membranes

Technical Accomplishments: Stack Testing

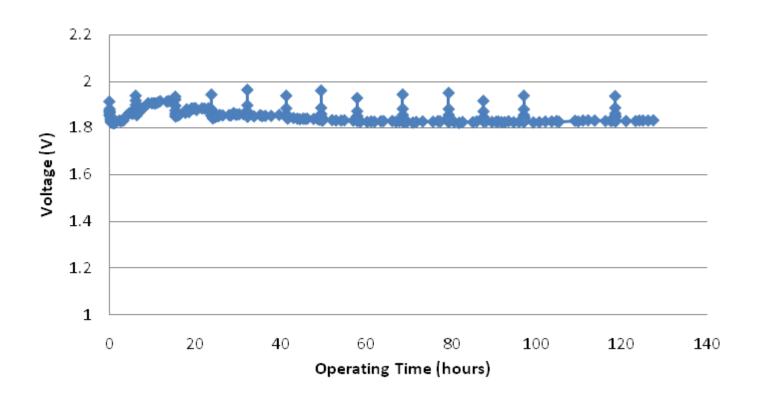

Technical Accomplishments: Modeling

D-band orbital theory and density functional theory used to explain activity trends

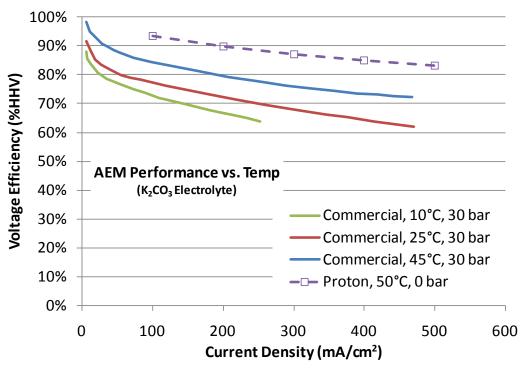
Larger metal-adsorbate repulsion (V²) leads to lower

OER activity

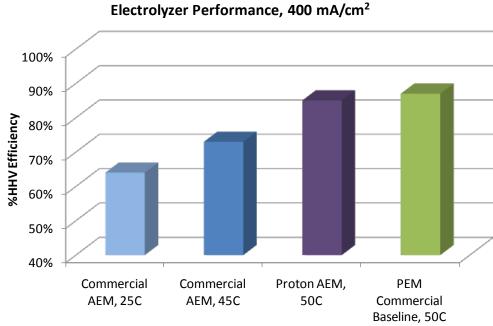
Catalyst	B cation	d band center*	V^2_{ad} *	$i_m(A/g)$	$i_s(A/m^2)$
DL D O	D.,	(ε_d, eV)	2.07	100+40	1.0+0.5
$Pb_2Ru_2O_{6.5}$	Ru	-1.41	3.87	100±40	1.0 ± 0.5
$Bi_{2.4}Ru_{1.6}O_{6.9}$	Ru	-1.41	3.87	10 ± 2	1.3 ± 0.2
$Pb_2Ir_2O_{6.5}$	Ir	-2.11	4.45	0.6 ± 0.1	0.5 ± 0.1
$Bi_2Ir_2O_{6.8}$	Ir	-2.11	4.45	0.11 ± 0.03	0.3 ± 0.1
BiPbIr ₂ O _{6.5}	Ir	-2.11	4.45	0.18 ± 0.06	0.5 ± 0.2
$Pb_2Os_2O_{6.5}$	Os		5.13	0.08 ± 0.03	0.1 ± 0.05



Proposed mechanism


Technical Accomplishments: Durability

- Voltage stability good with carbonate recirculation
- Phase II will focus on pure water



Comparison to State of the Art

 Exceeds existing AEM and approaches legacy PEM performance


Collaboration

- IIT major subcontractor on Phase 1
 - Catalyst synthesis and structural characterization
 - Molecular bonding theory
- Phase II to focus on continued synthesis optimization of particle size and composition
- Tuning of properties for membrane and ionomer stability

Future Work:

- Determine influence of composition on pyrochlore microstructure, physical properties, and activity
- Determine the impact of key AEM properties (conductivity, water uptake, gas crossover) on AEM performance and synthesize optimized AEMs
- Complete system trade study of electrolyte vs. cost and stability and develop prototype lab system
- Provide a product cost analysis for lab scale and large scale AEM electrolysis systems

Summary

- Relevance: Alternate electrolysis chemistry for capital cost reduction
- Approach: Leverage AEM expertise to reduce cell part cost with efficient catalyst and membrane materials to offset lower operating current

Technical Accomplishments:

- Improved OER and model development for improved prediction
- Initial membrane performance equivalent to baseline
- Stability of AEM electrolysis and improvement over existing technology

Collaborations:

IIT: Catalyst and membrane synthesis; modeling

Proposed Future Work:

- Leverage model to optimize catalyst performance
- Optimization of membrane properties for stable performance
- System prototype and cost analysis

