This presentation does not contain any proprietary, confidential, or otherwise restricted information

## Photoelectrochemical Material Synthesis at LANL

#### Todd L. Williamson

#### Los Alamos National Laboratory 05/15/2013 Project ID #



1

PD097

## Overview

#### Timeline

- Project start date: 10/01/2010
- Project end date: 9/30/2013\*
- Percent complete: 75%

#### Budget

- Total project funding
  - DOE share: \$ 365K
  - Contractor share: \$ 0K
- Funding received in FY12: \$ 100K
- Funding for FY13: \$65K

#### Barriers

- Barriers addressed
  - AE. Materials Efficiency Bulk and interface
  - AF. Materials Durability Bulk and interface
  - AG. Integrated Device Configurations

#### Partners

- Interactions/ collaborations
  NREL
- Project lead
  - Todd Williamson, LANL

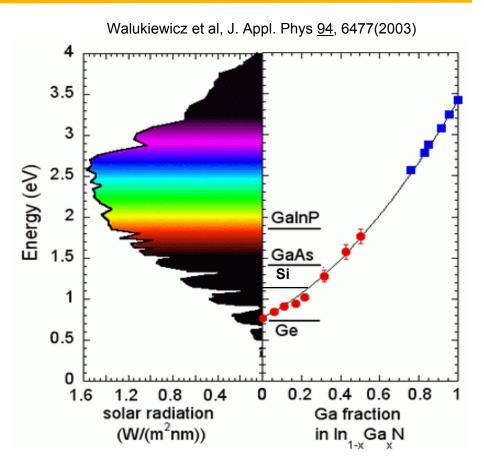


### Relevance

- The objective of this work is to explore the use of Group III Nitrides, specifically InGaN, for Photoelectrochemical Hydrogen production.
- The focus of this year's work has been on creating p-type and metal-polar InGaN which should offer increased stability and higher conversion efficiency than n-type, N-polar InGaN that has been produced previously

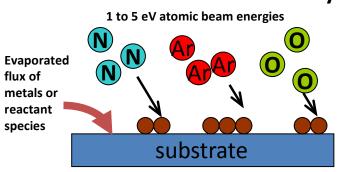
| Table 3.1.8 Technical Targets: Photoelectrochemical Hydrogen Production:<br>Photoelectrode System with Solar Concentration * |                             |                |                |                |                    |  |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|----------------|----------------|--------------------|--|
| Characteristics                                                                                                              | Units                       | 2011<br>Status | 2015<br>Target | 2020<br>Target | Ultimate<br>Target |  |
| Photoelectrochemical Hydrogen Cost <sup>b</sup>                                                                              | \$/kg                       | NA             | 17.30          | 5.70           | 2.10               |  |
| Capital cost of Concentrator & PEC Receiver<br>(non-installed, no electrode) <sup>c</sup>                                    | \$/m <sup>2</sup>           | NA             | 200            | 124            | 63                 |  |
| Annual Electrode Cost per TPD H <sub>2</sub> <sup>d</sup>                                                                    | \$/<br>yr-TPDH <sub>2</sub> | NA             | 2.0M           | 255K           | 14K                |  |
| Solar to Hydrogen (STH) Energy Conversion<br>Ratio <sup>e, f</sup>                                                           | %                           | 4 to 12%       | 15             | 20             | 25                 |  |
| 1-Sun Hydrogen Production Rate 9                                                                                             | kg/s per<br>m <sup>2</sup>  | 3.3E-7         | 1.2E-6         | 1.6E-6         | 2.0E-6             |  |

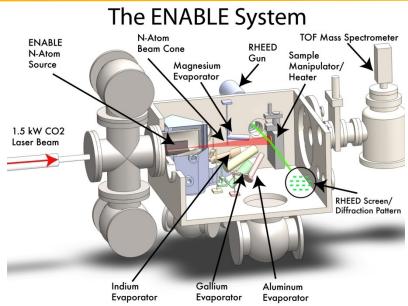
EST. 1943


## Approach

Our approach is to take utilize the InGaN ternary alloy system, a materials system whose bandgaps can span nearly the entire solar spectrum.

Pure nitride  $In_xGa_{1-x}N$  has potential to be both stable and efficient PEC electrode


InGaN materials are grown at Los Alamos National Lab (LANL) and their PEC H<sub>2</sub> production performance is characterized at the National Renewable Energy Lab (NREL)


EST.1943



# Approach – Film Synthesis

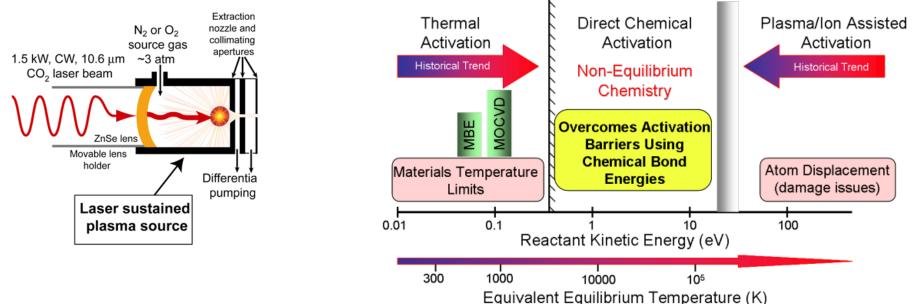
### Energetic neutral atom beam assisted surface chemistry





#### What is ENABLE:

ENABLE is a unique MBE-type film growth technology that uses a *high-flux* beam of *energetic* neutral nitrogen (or oxygen) atoms with kinetic energies of 1 to 5 eV for overcoming reaction barriers. Conventional thermal sources are used for metals.

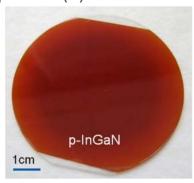

#### Advantages:

- With ENABLE, the *kinetic energy* of *neutral atoms* provides the reactant energy required to grow thin films via *direct chemical activation* (not high T or charge)
- The atom's kinetic energy also promotes surface diffusion and byproduct removal
- ENABLE provides a *high flux* of reactive species facilitating *high film growth rates* (>5 microns/hr) and *non-equilibrium* growth conditions allowing thermodynamic limits to be overcome
- No toxic chemical precursors or hazardous waste stream



# Approach – Film Synthesis





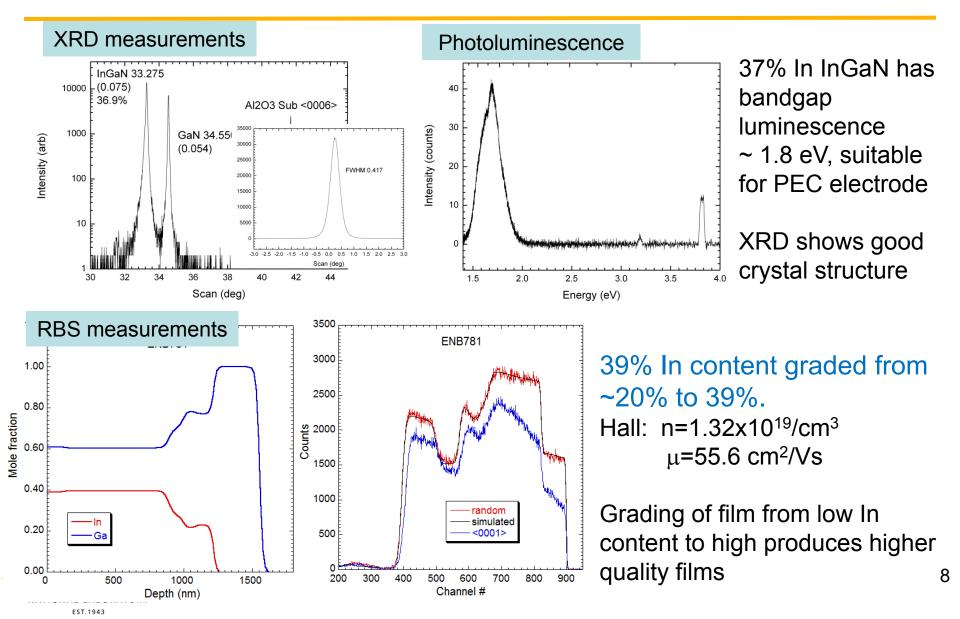

#### **ENABLE** advantages for Group-III Nitride films:

- InGaN films can be grown over the full alloy composition range with good epitaxy & crystallinity
- Excellent compositional uniformity with no phase segregation
- Permits compositional grading for complex device architectures

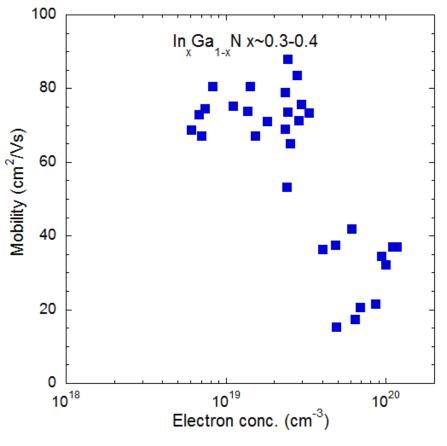
os Alamos

NATIONAL LABORATORY EST. 1943




"red" In-rich InGaN film with 2.0 eV band gap grown by ENABLE

### Approach – Milestones


| Milestone                                                                                                                                                                                                                                                                                                                                                           | Completion<br>Date | Status |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|
| Demonstrate growth of single phase n-<br>type InGaN with In compositions 15% -<br>30% on double-side polished sapphire<br>and p-type Si with carrier<br>concentrations ~10 <sup>18</sup> /cm <sup>3</sup> or less and<br>carrier mobilities ~100 cm <sup>2</sup> /V*s or<br>greater. Films will be sent to NREL for<br>PEC performance characterizations.           | January, 2013      | 50%    |
| Demonstrate growth of single phase p-<br>type InGaN with In compositions 15% -<br>30% on sapphire and p-type Si with<br>carrier concentrations between<br>5x10 <sup>17</sup> /cm <sup>3</sup> – 1x10 <sup>19</sup> /cm <sup>3</sup> and mobilities<br>greater than 10 cm <sup>2</sup> /V*s. Films will be<br>sent to NREL for PEC performance<br>characterizations. | May, 2013          | 25%    |
| With NREL, complete evaluation of<br>InGaN material for direct water splitting<br>or as part of a mechanically stacked<br>tandem system and based on<br>achievable efficiency and stability make<br>go/no-go decision on additional studies.                                                                                                                        | September,<br>2013 | 10%    |



# Accomplishments and Progress - Characterization results for InGaN on sapphire ~37% In and ~39% In contents

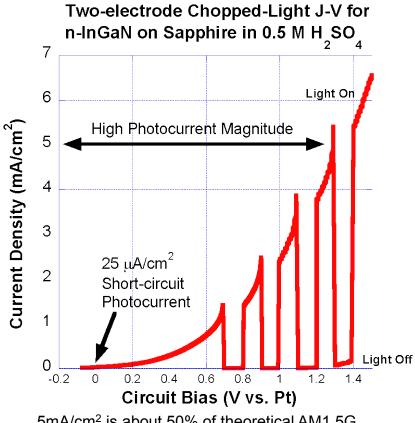


# Accomplishments and Progress- Mobility of InGaN alloy films with In content in the 30 to 40% range



EST.1943

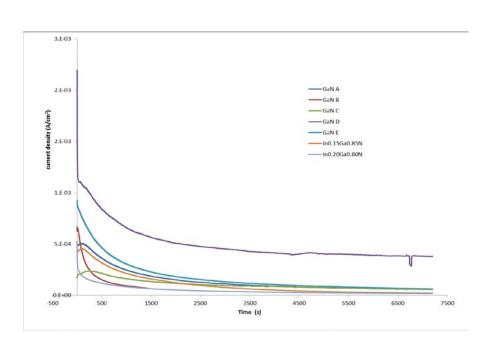
#### Noteworthy achievement for InGaN films:


- In-rich (30 to 40% In) InGaN films
- residual electron concentration in the mid-10<sup>18</sup> range
- mobility ~80 cm<sup>2</sup>/Vs
- thicknesses suitable for use as PEC electrodes

#### Still actively working to improve:

- film quality
- further reduce the electron concentrations to lower levels to improve performance and stability

9


# Accomplishments and Progress – PEC Performance of InGaN Under Illumination

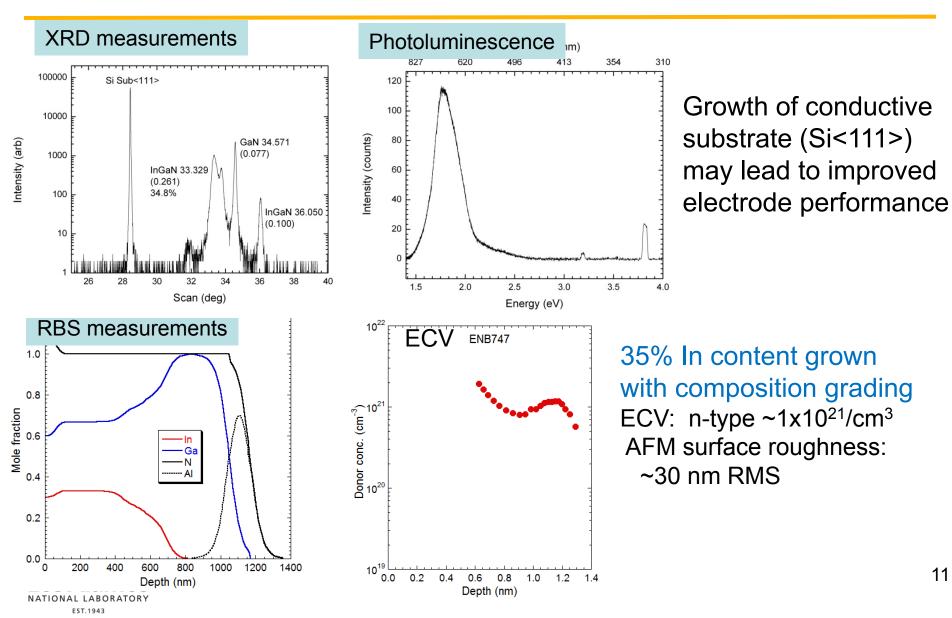


5mA/cm<sup>2</sup> is about 50% of theoretical AM1.5G max for this ~2.2 eV band gap material

Performance may be increased by using conductive substrates and p-type films Alamos

EST.1943

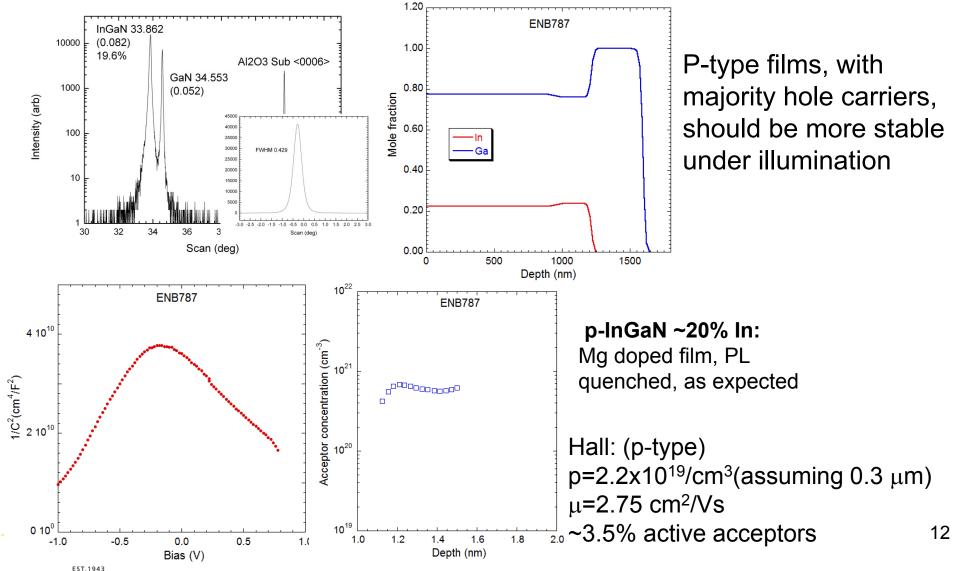



InGaN films show photocurrent at 0 V applied bias, suggesting the interfacial energetics are favorable for spontaneous photoelectrolysis

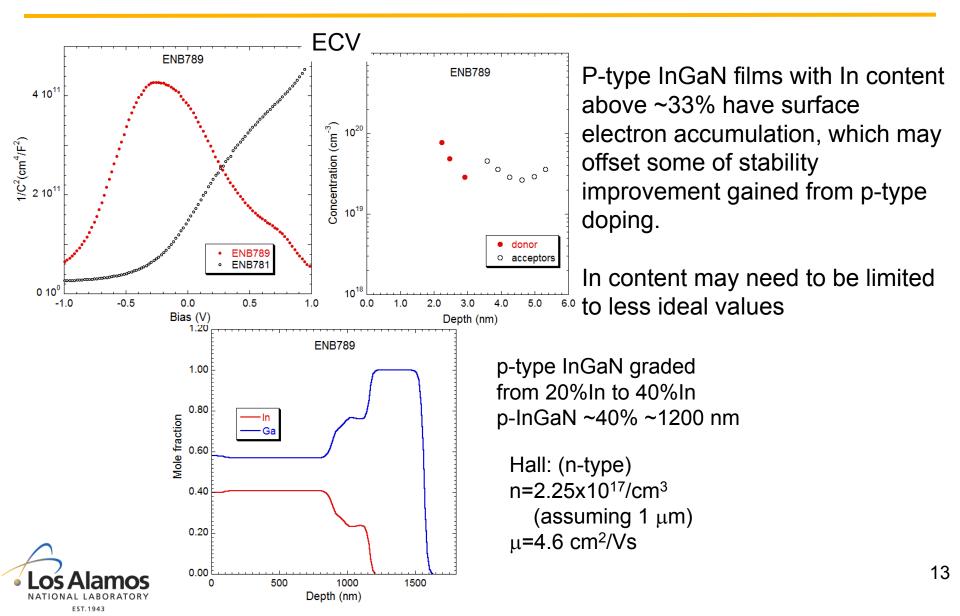
Both InGaN and GaN films show degradation with time.

Films are N-polar, and n-type, which may be reason for stability problem.

10

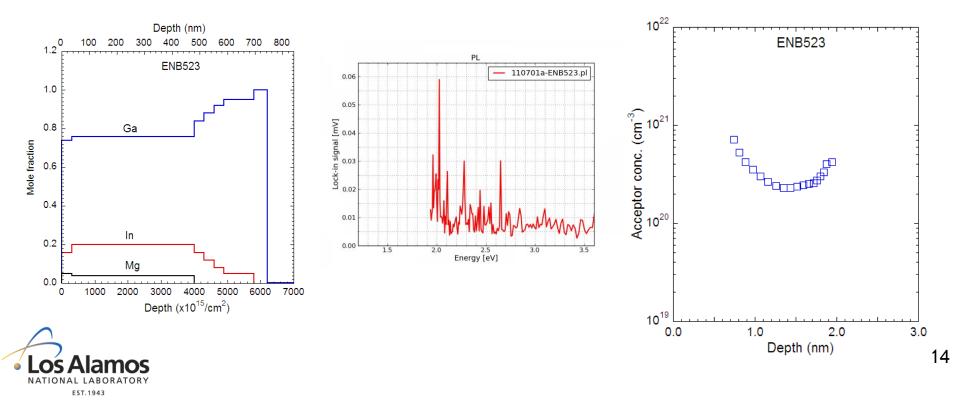

#### **Accomplishments and Progress - Characterization Results** for InGaN on Si(111) ~35% In Content w/ AIN Buffer




11

# Accomplishments and Progress - InGaN (~20%In) p-type film growth






# Accomplishments and Progress - InGaN (~40%In) p-type film growth



#### Accomplishments and Progress - 20% InGaN on <111> Si, Mg-doped

- InGaN on <111> Si with AIN and graded InGaN buffer, with graded layer starting at 5% InGaN
- Graded buffer was graded over ~200 nm from 5% InGaN to 20% InGaN
- InGaN film is 500 nm thick
- Film was Mg-doped, shows active acceptors by ECV, PL quenched



## Collaborations

Within DOE Hydrogen and Fuel Cells Program

- National Renewable Energy Laboratory (NREL)
  - InGaN films' PEC electrode performance evaluated by John Turner and Todd Deutsch. Team is prime POC for this work, NREL analysis is key for ongoing work on InGaN for PEC H<sub>2</sub> Production

Outside of DOE Hydrogen and Fuel Cells Program

- Lawrence Berkeley National Laboratory
  - Materials characterization on InGaN films including RBS, electrical characterization, and PL performed by team of W. Walukiewicz, K.M. Yu, and L. Reichertz
- Arizona State University
  - C. Honsberg and F. Ponce groups assist with InGaN film growth strategies and provides advanced XRD and PL characterization of films.



### **Proposed Future Work**

#### Address issue of low photocurrent

• Low photocurrent is most likely related to material quality and use of ntype films. To improve, we will seek to improve material quality and improve p-type doping.

#### Address issue of electrode stability

 N-polar InGaN material, that is currently produced, is know to corrode in conditions similar to what is used during PEC H<sub>2</sub> production.

Investigate tandem cell configurations for improved efficiency



 $In_{.29}Ga_{.71}N \qquad In_{.33}Ga_{.67}N \quad In_{.40}Ga_{.60}N \quad In_{.41}Ga_{.59}N \quad In_{.48}Ga_{.52}N$ 



## Mandatory Summary Slide

| Relevance:                    | The objective of this work is to explore the use of Group III Nitrides, specifically InGaN, for Photoelectrochemical Hydrogen Production                                                                                                                                                                                                                      |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Approach:                     | Utilize unique MBE capability at LANL to produce InGaN with quality, thickness, and In-content not available by conventional film synthesis techniques                                                                                                                                                                                                        |
| Technical<br>Accomplishments: | InGaN films show photocurrent at 0 V applied bias, suggesting the interfacial energetics are favorable for spontaneous photoelectrolysis. However, N-polar InGaN appears to corrode under operating conditions. To address this issue, we have begun to produce p-type material and are investigating strategies for producing more stable, Metal-polar InGaN |
| Collaborations:               | Collaborations with NREL for evaluation of InGaN PEC performance; Collaborations with LBNL and ASU for film characterizations and film growth strategies                                                                                                                                                                                                      |
| Proposed Future<br>Work:      | Address issue of low photocurrent; Address issue of electrode stability; Investigate tandem cell configurations for improved efficiency                                                                                                                                                                                                                       |
|                               |                                                                                                                                                                                                                                                                                                                                                               |

EST.1943