# Next-Generation Si Microwire Array Devices for Unassisted Photoelectrosynthesis

### Shane Ardo California Institute of Technology May 15, 2013

Project ID # PD099

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# Overview

### **Project Timeline**

- Start date: November, 2011
- End date: June, 2013
- Percent complete: 75%

### Budget

- Total project funding
  - DOE share: \$150,000
  - Contractor share: \$0
- Funding by year
  - FY12: \$75k
  - FY13: \$50k (projected)

### **Barriers Addressed**

- Photoelectrochemical Hydrogen
   Production Photoelectrode System
- Materials Durability Bulk and Interface
- Integrated Device Configurations

### **Partners / Collaborators**

- University of Manitoba (Freund, Oliver, Thomson Groups): evaluation of single microwire–polymer junctions
- Technical University of Denmark (Chorkendorff Group): amorphous-MoS<sub>x</sub> electrocatalyst synthesis
- École Polytechnique Fédérale de Lausanne (Ballif Group): amorphous-Si:H semiconductor deposition

### Relevance

**Objective**: Fabricate a scalable Si microwire array-based device for sunlight to clean  $H_2$  fuel production, through hydrohalic acid splitting

| DOE Barriers and Targets                                               | Project Goal                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photoelectrochemical Hydrogen<br>Production – Photoelectrode<br>System | <ul> <li>Fabricate polymer-embedded arrays of n-<br/>type and p-type crystalline Si microwires</li> <li>Demonstrate stable sunlight-driven<br/>hydrohalic acid splitting</li> <li>Identify stable and efficient non-noble-<br/>metal electrocatalysts</li> </ul>                                         |
| AF) Materials Durability – Bulk and Interface                          | <ul> <li>Stabilize Si from oxidation while passing<br/>anodic current in aqueous HI and HBr<br/>electrolytes</li> </ul>                                                                                                                                                                                  |
| AG) Integrated Device<br>Configurations                                | <ul> <li>Fabricate an organic photovoltaic that contains ionically conductive materials</li> <li>Fabricate a tandem Si microwire array with an integrated amorphous-Si light absorber</li> <li>Demonstrate sunlight-driven H<sub>2</sub> evolution through HBr splitting with a tandem device</li> </ul> |

### May, 2012: 6-Month Report

Status & Description of Milestones **A) 100% Complete**; Stable n-type Si microwire array electrodes decorated with Pt electrocatalysts for sustained sunlight-driven iodide oxidation in HI(*aq*) with > 3% sunlightto-electrical energy conversion efficiency and > 80% stability of the short-circuit photocurrent density,  $j_{sc}$  (200 hr operation)

**B) 75% Complete**; Peeled, flexible, radial buried-homojunction pn<sup>+</sup>-doped Si microwire array devices decorated with Pt electrocatalysts and partially embedded in Nafion<sup>®</sup> for stable HI*(aq)* splitting with > 3% sunlight-to-hydrogen energy conversion efficiency

Remaining barrier: Devices leak through macroscopic pinholes in the Nafion<sup>®</sup> membrane, preventing useful efficiency measurements

#### Results

#### Substeps achieved:

Optimal CVD–VLS growth procedure for n-type Si microwire arrays, including:

- Post-growth microwire processing and etching
- Surface methylation of microwires for protection
- Potentiostatic electrochemical deposition of Pt

#### Substeps achieved:

- Pt electrocatalyst deposition on the backsides of peeled, polymer-embedded Si microwire arrays by electron-beam evaporation
- Methylation of the backsides of peeled, polymerembedded Si microwire arrays for protection
- Fabrication of a measurement system, including:
  - A device holder (acrylic block and glass cuvettes)
  - A means of forced convection (inductive stirring)
  - An imaging system (borescope)
  - In situ reaction product detection capabilities to 1%
  - *j*<sub>sc</sub> (mass spectrometry and visible spectroscopy)

### August and November, 2012: 9- and 12-Month Reports

Results

Status & Description of Milestones **C) 90% Complete**; Radial, buriedhomojunction np<sup>+</sup>-doped Si microwire array electrodes with > 3% sunlight-to-electrical energy conversion efficiency in (non-)aqueous electrolyte

(Prerequisite: Milestone A)

**D) 50% Complete**; Peeled, flexible, radial buried-homojunction  $n(p^+)$ -doped Si microwire array devices decorated with Pt electrocatalysts and partially embedded in Nafion<sup>®</sup> for stable HI*(aq)* splitting with > 3% sunlight-to-hydrogen energy conversion efficiency

(Prerequisites: Milestones B, C)

E) <u>No Go</u>; 10% Complete; Innovation Project: Ionically conductive organic photovoltaic with  $V_{ion-drop} < 10 \text{ mV}$  (at 10 mA/cm<sup>2</sup>),  $V_{oc} > 600 \text{ mV}$ , and  $j_{sc} > 10 \text{ mA/cm}^2$  **Substep achieved:** Optimal boron emitter doping conditions from BN source wafers of 7 min at 950 °C

Remaining barrier: A 2.2% efficiency was observed in non-aqueous electrolyte, but a > 3% efficiency was attained for aqueous iodide photo-oxidation

**Substep achieved:** In situ growth of an n<sup>+</sup>-doped region at the bottom of the microwires to form a low-resistance tunnel junction between the backsides of n-type Si microwires and Pt

Remaining barrier: Low-resistance contacts were not present after a required high-temperature oxidation step which gettered the dopants

Remaining barrier: Efficient organic photovoltaics were fabricated by drop casting, but their water and air instability occluded measurements when Nafion<sup>®</sup> was introduced or when in contact with aqueous electrolyte

### May, 2013: 18-Month Report

| Status & Description of Milestones                        | Results                                                                                                                    |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                                                           | Substep achieved: PEDOT:PSS on surface-                                                                                    |
| F) 50% Complete; Stable p-type Si                         | functionalized planar Si was stable for halide oxidation                                                                   |
| microwire array electrodes for sustained                  |                                                                                                                            |
| bromide oxidation in HBr(aq) in the dark with             | Remaining barrier: Atomic layer deposition of TiO <sub>x</sub> ,                                                           |
| > 80% current stability (200 hr operation)                | AIO <sub>x</sub> , or MnO <sub>x</sub> on Si partially stabilized the Si but<br>also significantly attenuated current flow |
|                                                           |                                                                                                                            |
| G) Go; 50% Complete; Peeled, flexible,                    | Substep achieved: Amorphous Si was deposited by                                                                            |
| stable, tandem amorphous-Si on crystalline                | PECVD on pn <sup>+</sup> -doped Si microwire arrays, which                                                                 |
| Si microwire array devices with Pt and                    | exhibited $V_{oc-max} \approx 960 \text{ mV}$ in non-aqueous electrolyte,                                                  |
| partially embedded in Nafion <sup>®</sup> for stable      | and $V_{oc-max} \approx 780 \text{ mV}$ for aqueous H <sub>2</sub> evolution                                               |
| HBr(aq) splitting with > 8% sunlight-to-                  |                                                                                                                            |
| hydrogen energy conversion efficiency                     | Remaining barrier: There is room for improvement                                                                           |
| (Prerequisites: Milestones B or C, D, F)                  | because planar devices exhibited $V_{oc-max} \approx 1.2-1.3$ V                                                            |
| U) FOU/ Complete: Decled flowible stable                  | Substance his word: $\Lambda > 0.00\%$ transportate destrictly                                                             |
| <b>n) 50% Complete</b> , Peeled, liexible, stable,        | substep achieved: A > 90% transparent electrically                                                                         |
| with Pt and partially embedded in Nation <sup>®</sup> for | and formally conductive memorane was fabricated                                                                            |
| stable HBr/ag) splitting with $> 7\%$ suplight to         | Pomaining barrior: The optimal membrane                                                                                    |
| bydrogen energy conversion efficiency                     | formulation containing Ag nanowiros DEDOT:DSS                                                                              |
| $(Prerequisites: Milestones R \cap D \in F)$              | and Nation <sup>®</sup> is not yet determined                                                                              |
|                                                           |                                                                                                                            |

### November, 2013: 24-Month Report

| Status & Description of Milestones                                                                                                                                                                                                                                                                                                                       | Results                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| <b>K) 50% Complete</b> ; Mo/W(S,Se) <sub>2</sub> nanometer-<br>sized electrocatalysts for efficient halide<br>oxidation and H <sub>2</sub> evolution in the dark with <<br>150 mV overpotential at 10 mA/cm <sup>2</sup>                                                                                                                                 | <b>Substep achieved:</b> PEDOT:PSS on surface-<br>functionalized planar Si was stable and somewhat<br>catalytic for halide oxidation     |
|                                                                                                                                                                                                                                                                                                                                                          | Remaining barrier: Amorphous $MoS_x$ on Si met this goal for $H_2$ evolution but $MoS_x$ is not stable during sustained halide oxidation |
| L) 25% Complete; Peeled, flexible, stable,<br>tandem p-Si    n-Si microwire array devices<br>with Mo/W(S,Se) <sub>2</sub> electrocatalysts and<br>partially embedded in Nafion <sup>®</sup> for stable<br>HBr( <i>aq</i> ) splitting with > 6% sunlight-to-<br>hydrogen energy conversion efficiency<br><i>(Prerequisites: Milestones B, C, D, F, K)</i> | Substeps achieved: None                                                                                                                  |
| <b>I</b> , <b>J</b> , <b>M</b> ) Removed these milestones, because my program timeline will be curtailed when I                                                                                                                                                                                                                                          | N/A                                                                                                                                      |

begin my independent faculty career this fall

7



- Electrically active dopant density in individual n-type Si microwires before and after processing calculated from fourpoint-probe resistance measurements
- Dopant densities of ~1 x 10<sup>17</sup> cm<sup>-3</sup> resulted in the most efficient devices



 Four major steps in the CVD–VLS growth fabrication process of n-type Si microwire arrays, with optional radial n<sup>+</sup>-type emitters

### Fabrication protocol for n-type Si microwire arrays



- Three-electrode *j*–*E* measurements in  $Me_2Fc^{+/0}$ –LiClO<sub>4</sub>–CH<sub>3</sub>OH demonstrate a state-of-the-art corrected  $\eta$  = 3.4%
- Electrode is an n-type Si microwire array after thermal oxidation processing
- Three-electrode spectral response measurements of the same electrode type in the same electrolyte demonstrate external quantum yields similar to those previously measured for p-type Si microwire arrays

#### Efficient n-type Si microwires were realized



- Three-electrode *j*–*E* measurements in fuming aqueous HI demonstrate a state-of-the-art uncorrected  $\eta = 3.6\%$
- Electrode is an n-type Si microwire array after thermal oxidation, surface methylation (scheme), and Pt catalyst deposition



- Three-electrode *j*–*E* measurements over 200 hours continued operation at shortcircuit in fuming aqueous HI
- Stability was > 80 % of  $j_{sc-initial}$  over 200 hours continued operation while continuously illuminated

#### Efficient and stable n-type Si microwires photo-oxidize iodide



- Three-electrode *j*–*E* measurements in  $Me_2Fc^{+/0}$ –LiClO<sub>4</sub>–CH<sub>3</sub>OH demonstrate a corrected  $\eta$  = 2.2%
- Electrode is an undoped Si microwire array grown on an n<sup>+</sup>-Si substrate after thermal oxidation and p<sup>+</sup> radial emitter doping
- Three-electrode *j*–*E* measurements in fuming aqueous HI demonstrate an uncorrected  $\eta = 3.5\%$
- Same electrode type but with Pt catalyst deposition (instability was due to lack of surface methylation)

#### Efficient (n<sup>+</sup>)ip<sup>+</sup>-doped Si microwires were realized



- Two-point-probe individual n-type Simicrowire–PEDOT:PSS *j–E* measurements (inset) evaluating the contact resistances: one that had been annealed 10 hr on an n<sup>+</sup>(P)-Si substrate, and one that was grown as an axially doped n<sup>+</sup>n-Si microwire and then went through the thermal oxidation process
- Three-electrode *j*–*E* measurements in fuming aqueous HI demonstrate an uncorrected  $\eta = 2.6\%$
- Electrode is an axially doped n<sup>+</sup>n-Si microwire array grown after thermal oxidation, surface methylation, and Pt catalyst deposition (inset)

n<sup>+</sup>n-doped Si microwires are efficient with little shunting, but are not degenerate after the thermal oxidation step



- Three-electrode *j*–*E* measurement in fuming aqueous HBr demonstrate very efficient and stable bromide oxidation catalysis in the dark
- Electrode is planar p-Si with mixed methyl/thienyl surface chemistry, and electropolymerized PEDOT:CIO<sub>4</sub>
- Three-electrode chronoamperometry measurement in fuming aqueous HBr demonstrate very stable H<sub>2</sub> evolution catalysis in the dark
- Electrode is planar p-type Si with mixed methyl/thienyl surface chemistry, and electrodeposited amorphous MoS<sub>x</sub>

PEDOT:CIO<sub>4</sub> stabilizes Si from oxidation and efficiently catalyzes bromide oxidation, while a-MoS<sub>x</sub> is stable during H<sub>2</sub> evolution catalysis in fuming HBr



- Three-electrode *I*–*E* measurements in fuming aqueous HCI demonstrate an uncorrected  $\eta = 1.2\%$  for H<sub>2</sub> evolution
- Electrode is a p-type Si microwire array after thermal oxidation, n<sup>+</sup> radial emitter doping, and Pt catalyst deposition (inset)

Two-electrode, two-cell-compartment measurement with the pn<sup>+</sup>-Si microwire array photocathode illuminated in fuming aqueous HCI separated from a backside electrode in fuming aqueous HI by a commercial Nafion<sup>®</sup> membrane, and shorted together via an external wire

Unassisted HI splitting occurs via H<sub>2</sub> evolution at an illuminated pn<sup>+</sup>-doped Si microwire photocathode while a backside electrode oxidizes iodide to triiodide





- Apparatus and conditions used to quantify I<sub>3</sub><sup>-</sup> and H<sub>2</sub> products in situ using visible spectroscopy and mass spectrometry
- Fiber optic excitation source, inductive stirrers, gas-tight cathode compartment, and 2 mm pathlength anode compartment
- Products generated at (current) rates > 100 µA/cm<sup>2</sup> can be detected

Apparatus and measurement system for free-standing hydrohalic acid splitting from peeled, polymer-embedded microwire arrays was developed



- Three-electrode *j*–*E* measurements in aqueous 0.5 M H<sub>2</sub>SO<sub>4</sub> demonstrate photoelectrochemical H<sub>2</sub> evolution using amorphous MoS<sub>x</sub> catalysts
- Electrode is a p-type Si microwire array after thermal oxidation, p<sup>+</sup> radial emitter doping, and *a*-MoS<sub>x</sub> electrochemical deposition



 Three-electrode spectral response measurements of the same electrode in the same electrolyte demonstrating the loss in absorbance above 850 nm with subsequent *a*-MoS<sub>x</sub> deposition due to light absorption by the *a*-MoS<sub>x</sub> semiconductor catalyst

#### Amorphous $MoS_x$ on pn<sup>+</sup>-doped Si microwires catalyzes H<sub>2</sub> evolution in acidic electrolytes



- Scheme depicting arrangement of materials in tandem amorphous-Si on crystalline Si microwire arrays
- Three-electrode *j*–*E* measurements in  $CoCp_2$ –LiClO<sub>4</sub>–CH<sub>3</sub>CN demonstrate a state-of-the-art uncorrected  $\eta$  = 0.65% with  $V_{oc}$  = 960 mV, and uncorrected  $\eta$  = 0.43% with  $V_{oc}$  = 780 mV in 0.5 M H<sub>2</sub>SO<sub>4</sub> after Pt electrocatalyst deposition

Tandem amorphous-Si on crystalline-Si microwire arrays obtain larger photovoltages than Si microwire arrays alone

| 2-month | Ag NWs                                                      |            | 12-month   |
|---------|-------------------------------------------------------------|------------|------------|
|         | Design of Experiments<br>Optimized Component                | Measured   | Calculated |
|         | Sheet/Longitudinal<br>Conductance (mS/sq)                   | 69 ± 20    | N/A        |
|         | Transverse, Area-Specific Conductance (S cm <sup>-2</sup> ) | 26.9 ± 0.2 | 22.8       |
|         | Integrated Transmittance<br>(< 1100 nm; %)                  | 89 ± 6     | 92         |
| 50 μm   | Time to Complete Delamination (min)                         | 46 ± 19    | 37         |

- Two Si microwire arrays, each partially embedded in Nafion<sup>®</sup>, and held together with a composite membrane consisting of Nafion<sup>®</sup>, PEDOT:PSS and Ag nanowires in a 2.33 : 4.15 : 4.15 ratio (inset)
- Membrane performance parameters for the state-of-the-art membrane composition
- This composition results in a negligible 0.4 mV potential drop at 10 mA/cm<sup>2</sup> and thus can be made less electrically conductive and more transparent and adhesive

# A transparent electrically and ionically conductive membrane was fabricated



 Solid-state two-electrode j–E measurements of a drop cast organic photovoltaic (scheme) to mimic a deposition condition that could be amenable to the backsides of peeled, polymer-embedded Si microwire arrays

This project is a no-go for making this OPV ionically conductive

# Collaborations

#### n-type Si microwire backside contacts

- » Prof. Michael Freund, Prof. Derek Oliver, Prof. Douglas Thomson, Dr. Iman Yahyaie, Elahe Asgari at the University of Manitoba (individual microwire evaluation)
   » Prof. Nathan Lewis, Noah Plymale at Caltech (metal contact characterization)
- Amorphous MoS<sub>x</sub> electrocatalysts on Si microwire arrays
  - » Prof. Ib Chorkendorff, Dr. Brian Seger at the Technical University of Denmark (DTU) (catalyst synthesis techniques)
  - » Prof. Nathan Lewis, Chris Roske at Caltech (deposition and electrode evaluation)
- Amorphous-Si:H || crystalline-Si microwire tandem arrays
  - » Prof. Christophe Ballif, Dr. Corsin Battaglia, Mathieu Boccard at the École Polytechnique Fédérale de Lausanne (EPFL) (*a*-Si:H PECVD deposition)
     » Prof. Nathan Lewis, Amanda Shing at Caltech (electrode evaluation)
- Electrically and ionically conductive membranes
  - » Prof. Nathan Lewis, Sang Hee Park, Rasmus Nørregård at Caltech (fabrication and characterization)
- Ionically conductive organic photovoltaics
  - » Prof. Nathan Lewis, Marino DiFranco at Caltech (fabrication and device evaluation)

## **Proposed Future Work**

### FY2013 (July, 2013: 20-Month Report)

#### **Description of Work**

B, D) Re-evaluate peeled, flexible, radial buried-homojunction Si microwire array devices with Pt electrocatalysts and partially embedded in Nafion<sup>®</sup> for stable HI*(aq)* splitting with > 3% sunlight-tohydrogen energy conversion efficiency

H) Optimize formulation for electrically and ionically conductive membrane using Nafion<sup>®</sup>, PEDOT:PSS, and Ag nanowires

#### F, K) Continue to evaluate PEDOT:PSS and other candidate catalysts and protective layers to catalyze bromide oxidation and protect Si from oxidation in fuming HBr, respectively

G) Continue to evaluate amorphous-Si on crystalline Si microwire array photoelectrodes for H<sub>2</sub> evolution

#### Plan to Meet Milestones

Continue to perfect the infilling and peeling technique for microwire arrays partially embedded in Nafion<sup>®</sup>; alter formulation of Nafion<sup>®</sup> precursor solution to assist in more uniform, pinhole-free casting of membranes

Define the essential parameters and evaluation techniques to quantify the membranes, and perform a design of experiments analysis to determine the optimal membrane composition

Investigate nitride and carbide nanoparticle materials known to be efficient and stable halide oxidation catalysts in nitrile-based electrolytes

Alter the deposition protocol to increase the amorphous Si conformality and introduce a stable, conductive, transparent coating to attenuate *a*-Si oxidation

# **Project Summary**

A scalable Si microwire array-based device for sunlight to clean  $H_2$  fuel production, through hydroiodic acid splitting, was demonstrated

| DOE Barriers and Targets                                               | Key Take-Home Points                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photoelectrochemical Hydrogen<br>Production – Photoelectrode<br>System | <ul> <li>Peeled Nafion<sup>®</sup>-embedded arrays of n-type and p-type crystalline Si microwires were fabricated</li> <li>Stable and efficient sunlight-driven hydroiodic acid splitting was demonstrated</li> <li>Amorphous MoS<sub>x</sub> catalyzes H<sub>2</sub> evolution in fuming HBr and is stable</li> </ul> |
| AF) Materials Durability – Bulk and Interface                          | <ul> <li>PEDOT:CIO<sub>4</sub> stabilizes Si from oxidation<br/>while passing anodic current in aqueous HI<br/>and HBr electrolytes</li> </ul>                                                                                                                                                                         |
| AG) Integrated Device<br>Configurations                                | <ul> <li>An efficient tandem Si microwire array, with<br/>an integrated amorphous-Si light absorber,<br/>was fabricated</li> <li>A transparent electrically and ionically<br/>conductive membrane for a tandem device<br/>design was fabricated</li> </ul>                                                             |