

Project ID # SCS005

R&D for Safety, Codes and Standards: Materials and Components Compatibility Sandia National Laboratories

Brian Somerday (Presenting) Principle Investigator

Team Members: Chris San Marchi, Aaron Harris

DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting May 14, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000

Overview

Timeline

- Project start date: Oct. 2003
- Project end date: Sept. 2015
- Percent complete: 83%

Budget

- Project funding DOE share: \$6.4M
- Funding received in FY12: \$0.8M
- Planned funding for FY13: \$0.4M

MYRD&D 2012 Barriers

A. Safety Data and Information: Limited Access and Availability

F. Enabling national and international markets requires consistent RCS

G. Insufficient technical data to revise standards

Partners

- **SDO/CDOs:** CSA, ASME, SAE, ISO
- Industry: FIBA Technologies, European cylinder manufacturer, Swagelok
- Universities: Boise State
- Govt: DOE Pipeline Working Group
- International: I2CNER (Kyushu University, Japan), AIST-Tsukuba

2

Project Approach

The Safety, Codes and Standards program coordinates critical stakeholders and research to remove technology deployment barriers

3

Objectives/Relevance

Objective: Enable technology deployment by providing science-based resources for standards and hydrogen component development and participate directly in formulating standards

Barrier from 2013 SCS MYRDD	Project Goal
A. Safety Data and Information: Limited Access and Availability	Develop and maintain material property database and identify material property data gaps
F. Enabling national and international markets requires consistent RCS	Develop more efficient and reliable materials test methods in standards Design and safety qualification standards for components (SAE J2579, ASME Article KD-10) and materials testing standards (CSA CHMC1)
G. Insufficient technical data to revise standards	Execute materials testing to address <i>targeted</i> data gaps in standards and critical technology development

FY2013 Approach and Milestones reacH₂

MYRD&D 2012 Barrier	FY13 Milestone	Status		
A. Safety Data and Information: Limited Access and Availability	Investigate and propose concepts for material property database	Contributed materials compatibility data to OpenEI website		
F. Enabling national and international markets requires consistent RCS	Optimize fatigue crack growth rate measurements for pressure vessel steels in H ₂ and report results to ASME Enable completion of standards through committee leadership and data evaluation	Completed test matrix on two steels over range of H ₂ pressure Publication of CHMC1 (Part 3) and SAE J2579 expected in 2013		
G. Insufficient technical data to revise standards	Measure benchmark tensile fracture properties of H ₂ -exposed orbital tube welds in collaboration with industry partner Develop capability for variable- temperature testing in high-pressure H ₂ gas	Completed testing of two welds at ambient and low temperature Two Boise State student teams designing pressure vessel concepts according to Sandia specifications		
National Laboratories CRF Research, Engineering, and Applications Center for Hydrogen				

L

reacH₂ Materials Compatibility and Components project impacts multiple standards

CSA CHMC1

- Materials testing and data application standard
- Sandia provides leadership in technical committee and document preparation
- Publication of Part 3 expected in 2013

• SAE J2579

- Hydrogen vehicle fuel system standard
- Sandia serves as U.S. technical lead on addressing hydrogen embrittlement
- Publication expected in 2013

6

- ASME Article KD-10
 - Standard on high-pressure hydrogen tanks for transport and storage
 - Sandia provides data on exercising and improving materials test methods
 - Reporting progress on optimizing fatigue crack growth testing to former chair of ASME Project Team on Hydrogen Tanks

 F_{*}

reacH2 Fatigue testing in H₂ must be optimized to balance efficiency and data reliability

- Load-cycle frequency, f, currently in ASME KD-10 (0.1 Hz) not practical
- Goal: establish test procedure that shortens test duration without compromising data quality
- Approach identified in FY11-12: measure *da/dN vs* ∆K at high frequency, apply correction based on limited low-frequency data

reacH₂ Completed test matrix to evaluate da/dN corrections: two steels at three pressures

• Steels provided by two partners: FIBA Technologies and European steel cylinder manufacturer

Steel	S _u (MPa)	H ₂ pressure (MPa)	Test frequency (Hz)	Load ratio	Status
SA372 Gr. J		10	10	0.1	Complete FY12-13
		10	variable	0.1	Complete FY12-13
	890	45	10	0.1	Complete FY11-12
		45	variable	0.1	Complete FY11-12
		100	10	0.1	In progress
		100	variable	0.1	Complete FY12-13
34CrMo4 10		10	10	0.1	Complete FY12-13
		10	variable	0.1	Complete FY12-13
	1045	45	10	0.1	Complete FY11-12
	1045	45	variable	0.1	Complete FY12-13
		100	10	0.1	Complete FY12-13
		100	variable	0.1	Withdrawn

8

Recomplishment: reacH₂ For higher-strength steel, da/dN correction depends on H₂ pressure and △K level

- Crack growth rate correction based on upper bounds in *da/dN vs f* data
- Upper-bound *da/dN* attained at limiting load-cycle frequency
 - Example: at 10 MPa H₂ pressure, da/dN reaches upper bound at $f \sim 1$ Hz for both ΔK levels
- Possible modified test method: measure *da/dN* vs *∆K* at 10 Hz, determine correction based on upper-bound *da/dN* measured at limiting frequency
- ASME Project Team dissolved, but communicating data to former chair

F *

9

reacH₂ For lower-strength steel, da/dN correction less sensitive to H₂ pressure

- Similar to 34CrMo4 steel, crack growth rate correction based on upper-bound *da/dN* defined at limiting load cycle frequency
- Unlike 34CrMo4 steel, upper-bound *da/dN* similar at 45 MPa H₂ and 100 MPa H₂ for both *∆K* levels
- Modification to test method may include defining limiting test pressure for lowerstrength steels
- ASME Project Team dissolved, but communicating data to former chair

e.

10

Previous Accomplishment:

reacH₂ Hydrogen compatible materials workshop: weld evaluation critical to technology deployment

- Welds are effective for joining metal components; reduce leaks in pressure systems compared to fittings
- Weld microstructures can be more susceptible to hydrogen embrittlement (HE), limiting performance of pressure systems
- Data gap: mechanical properties of technologically relevant, H₂-exposesd welds

Effects of welding practice investigated for orbital welds in type 316L tubes

- Orbital tube welds are important technology for H_2 distribution systems
- Type 316L austenitic stainless steel currently represents state-of-the-art for H_2 distribution components, e.g., tubing and valves
- Orbital tube welds (type 316L) produced with industrial partner (weld A) and internally using commercial equipment (weld B)
- Lengths of tubing with or without an orbital weld were tested in uniaxial tension

12

aboratories

- •Tensile ductility of both welds similar to non-welded tubing
- Hydrogen-affected ductility similar in weld A and nonwelded tubing
- Weld B shows greater effects of hydrogen, but remains ductile

reacH2 Accomplishment: Effect of low temperature evaluated for orbital tube welds

- Hydrogen-assisted fracture in austenitic stainless steel generally enhanced at low temperature
- At temperature of 223K, like at room temperature, hydrogen effects on ductility similar for non-welded tubing and weld A
- Fracture surfaces show ductile features with the involvement of boundaries when H-precharged, similar to bar materials

aboratories

13

reacH2 Accomplishment: Tensile ductility of tubing and welds similar to data for bar materials

- Tensile ductility of type 316/316L austenitic stainless steels follows a trend of greater resistance to hydrogen with higher nickel content
- Tensile ductility data for non-welded tubes and orbital welds appear to follow same basic trend with nickel content
- Lower tensile ductility of weld B under investigation

Points for annealed and strain-hardened bar represent type 316 & 316L austenitic stainless steels with different composition (plotted as function of nickel content)

15

reacH2 Technical Reference and Technical Database for Hydrogen Compatibility of Materials

- Information placed on OpenEl website: http://en.openei.org/wiki/ Gateway:Hydrogen
 - Updated full public report on Technical Reference for Hydrogen Compatibility of Materials (SAND2012-7321), 292 pages
 - Datasets for fatigue crack growth of materials in gaseous hydrogen

SANDIA REPORT SAND2012-7321 Unimited Release Protect Sentember 2012	Technical Reference	Technical Database	
Technical Reference for Hydrogen Compatibility of Materials	1100 Carbon steels 1100: C-Mn alloys	1100 Carbon steels CIA85: tension, fracture, fatigue SAN10: fracture, fatigue SAN11: fracture fatigue	
Prepared by Bendia Hose Marcia 2015 and Livermore, California 94550 Showenese. New Marcia 2015 and Livermore, California 94550 Sanda National Laboratorie is a multi-program laboratory managed and operated by Sandia Corporation, National Nucleur Security Administration under contract DE-AC04.9444.85000. National Nucleur Security Administration under contract DE-AC04.9444.85000.	1200 Low-alloy steels 1211: Cr-Mo alloys 1222: Ni-Cr-Mo alloys	1200 Low-alloy steels NIB10: fracture, fatigue	
	1400-1800 High-alloy steels 1401: 9Ni-4Co	1400-1800 High-alloy steels	
	2000 Austenitic steels	2000 Austenitic steels	
Sandia National Laboratories	3000 Aluminum alloys 3101: Pure aluminum 3210: 2xxx-series alloys 3230: 7xxx-series alloys	3000 Aluminum alloys	

Collaborations

- Standards Development Organizations (SDOs)
 - Examples: CSA, SAE, ASME, ISO
 - Sandia technical staff lead and serve on committees
- Industry partners
 - Examples: FIBA Technologies, European cylinder manufacturer, Swagelok
 - Partners provide technology-relevant materials and input into materials testing conditions
- Universities

reacH₂

- Example: Boise State University
- Student design teams developing two pressure vessel concepts consistent with Sandia specifications for variable-temperature testing in H₂ system

• International research institutions

16

- Example: International Institute for Carbon-Neutral Energy Research (I²CNER), Dr. Brian Somerday (Sandia) serving as Lead PI for Hydrogen Structural Materials Division
- Sandia influences and accesses basic research in I²CNER (e.g., predictive H₂-assisted fatigue models) that complements applied research in Materials Compatibility project

RF.

reacH2 Maintaining AIST-SNL collaboration to harmonize test methods and standards

- Two joint activities documented in project plan (Jan. 2012)
 - Validate and promote method for measuring "initiation" threshold of ferritic steels in H₂
 - Explore basic mechanisms of H₂-assisted fracture in stainless steels
- Round-robin test matrix on two ferritic pressure vessel steels (one each from Japan and U.S.) started at AIST
- Joint publication on mechanisms of H₂-assisted fracture in stainless steels submitted to ASME
- Collaboration sustained through reciprocal visits to laboratory sites (~5/year)

17

Proposed Future Work

Remainder of FY13

- Report results on fatigue crack growth measurements for SA372 Gr. J and 34CrMo4 steels in hydrogen gas to ASME and receive feedback
- Report and document results on tensile testing of H₂-exposed orbital tube welds at International Conference on Hydrogen Safety
- Evaluate commercial software for creating material property database
- Formalize format/structure of material property database: either (i) spreadsheet structure or (ii) commercial materials database structure
- Finalize pressure vessel design for variable-temperature testing in H₂ system

FY14

reacH₂

- Measure fatigue crack initiation resistance of H₂-exposed stainless steel tube welds
- Critically evaluate test method ("safety factor method") in CHMC1 Part 3 for qualifying materials for hydrogen service
- Develop validated methodology to account for fatigue crack initiation life in steel H₂ pressure vessels for consideration in ASME Article KD-10
- Develop R&D program with industry partner(s) to evaluate and improve resistance of high-strength structural metals to H₂-assisted fracture
- Leverage results on fatigue crack growth of pressure vessel steels in H₂ to enhance understanding of basic physics in collaboration with I²CNER

F *

18

Summary

- Materials testing motivated by standards development and technology needs
 - Optimizing fatigue crack growth test method in ASME KD-10 to balance efficiency and data reliability
 - Measuring tensile properties of H₂-exposed tube welds in collaboration with industry partner
- Initiated potential pathway for creating public-access material property database
- Demonstrating leadership in materials testing by developing new variabletemperature system and hosting international meeting
- Concrete progress in developing standards that address hydrogen compatibility of components
 - Publication of Part 3 in CSA CHMC1 expected in 2013
 - Publication of SAE J2579 expected in 2012
- Maintaining active international collaborations
 - HYDROGENIUS/AIST (Tsukuba, Japan)
 - I²CNER (Kyushu University, Japan)

19

Technical Back-Up Slides

20

reacH₂ Relationship between microstructure an

Relationship between microstructure and H₂-affected ductility of welds still unclear

- Evaluation of microstructure and fractography shows hydrogen effects are consistent with experience from base materials (type 316L orbital tube welds)
- Fracture features from H-precharged weld A show no distinct relationship to weld microstructure
- Fracture features from H-precharged weld B suggest local regions with relationship to weld microstructure

Room temperature fracture surfaces

21

reacH₂ Hosted meeting on Advancing Materials Testing in Hydrogen Gas at SNL/CA

- Goal: exchange test system design details and initiate international collaboration on next-generation testing capabilities
- Attendees: ~25 people from universities, national labs, and industry world-wide
- Output:
 - Catalogue design concepts, best practices, and safety features
 - Determine test system limits
 - Identify gaps in existing testing capabilities
 - Make meeting presentations available to the public
 - Identify pathways and resources for development of capabilities
 - Identify collaboration opportunities

22

Development of variable-temperature testing in H₂ system progressing

- Operational status
 - Dedicated test cell
 - Functioning test frame
 - Assembled gas manifold
- Current activity
 - Designing software for automated gas manifold
 - Stress/thermal analysis of pressure vessel concepts

- Team 1: large-bore vessel
- Team 2: small-bore vessel
- Both teams emphasizing thermal analysis

CSA CHMC1: standardized method to qualify materials for hydrogen service

- Parts 1, 2:
 - Previously published as Phase I
 - Specific methods for conducting tests in gaseous hydrogen
- Part 3: Material Qualification
 - Three different qualification procedures (Sections 8, 9, 10)
 - Section 8 : Stringent Pass/fail for SS and Al
 - Section 9: Determine safety factor to account for worse-case H₂ effect on mechanical properties
 - Section 10: Use measured mechanical properties to qualify material for a specific component design
 - Section 11: Procedures are provided to allow a materials specification to be qualified
 - Once specification is qualified, further testing is not required

Collaborations:

SNL and I²CNER leverage applied and basic research for common goal

Fatigue and Fracture

reacH₂

Optimize cost, performance,

S. Matsuoka (PI) Y. Murakami (PI) R. Ritchie (PI) I. Robertson (UI PI) P. Sofronis (PI) N. Aravas

- **Predictive models based on physics** of gas-surface interactions, H migration, and material degradation
- Advanced methods for measuring fatigue, fracture, and wear properties in H₂ environments

Next-generation materials having improved resistance to H₂-induced degradation at higher strength levels

Materials Processing

- S. Takaki (PI)
 - A. Macadre

and safety of H₂ components Friction and Wear

25

B. Somerday (Lead PI)

