International Partnership for Hydrogen & Fuel Cells in the Economy – Regulations Codes and Standards Working Group

> Jay Keller, Ph.D Zero Carbon Energy Solutions

Consultant to the U.S. DOE Fuel Cell Technologies Office Safety Codes and Standards Program

> 2013 Annual Merit Review, May 14, 2013 Project ID: SCS020

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

IPHE Vision

The IPHE was established in 2003 as an international intergovernmental organization to accelerate the use of hydrogen and fuel cells in the economy. It provides a mechanism for partners to organize, coordinate and implement effective, efficient and focused international research, development, demonstration and commercial utilization activities.

Australia	Germany	New Zealand	
Brazil	Iceland	Norway	
Canada	India	Russian Federation	
China	Italy	Republic of South Africa	
European Commission	Japan	United Kingdom	
France	Republic of Korea	United States	

Background

Challenge and Approach:

- Harmonized regulations, codes and standards (RCS) are essential to establishing a marketreceptive environment for commercialization of Hydrogen and Fuel Cell Technologies.
- In May 2010 (Essen, Germany), IPHE SC endorsed the importance of the RCS Working Group (WG) in taking a leading role in harmonizing RCS, from an IPHE top down perspective

Background

Benefit:

- The RCSWG's role is to create and conduct a forum where potentially contentious and controversial issues of RCS are identified and handled. The RCSWG can recommend a consensus solution and promote resolution of contentious issues.
- The RCSWG also conducts pre-normative work to globally harmonize the execution of testing relevant to RCS.

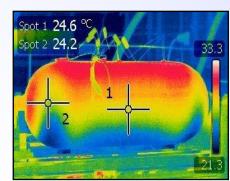
Background

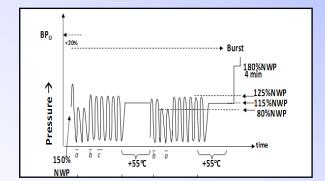
Fechnical Issue:

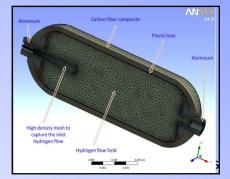
 There have been issues raised about the lack of uniformity in test measurement protocol related to Type IV composite overwrap pressure vessels (COPV).

RCSWG Response:

 A Round Robin (RR) to define a harmonized test measurement protocol.

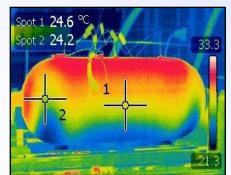

September 2011:

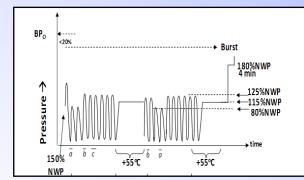

 Launched a multi-phase Round Robin (RR) testing program for Type IV COPVs (Japan, UK, Brazil, EC, France, Canada, China, U.S.)

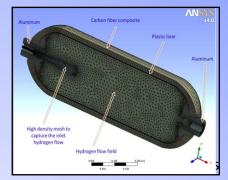

Phase I:

Completed for hydraulic 🗸

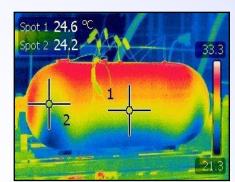
 Individually defined a test measurement protocol that was combined to yield a harmonized protocol that will yield consistent results independent of the test facility.

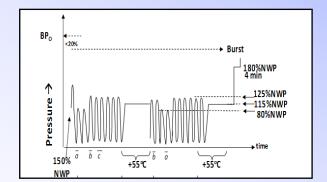


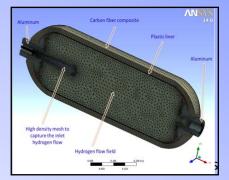



Phase II:

- Execute hydraulic and pneumatic cycle test representative of proposed requirements for composite overwrapped pressure tanks (i.e, SAE J2579, GTR, EIHP Rev 12B)
 - Four 35 MPa Type IV tanks from Hexagon Lincoln
 - Six 70 MPa Type IV tanks from CEA
 - Hydraulic testing completed on the first of two tanks
 - China & the U.S. used 2 of 4 Hexagon Lincoln tanks
 - Pneumatic cycle tests to start
 - JRC and SNL Q4 CY2013


7



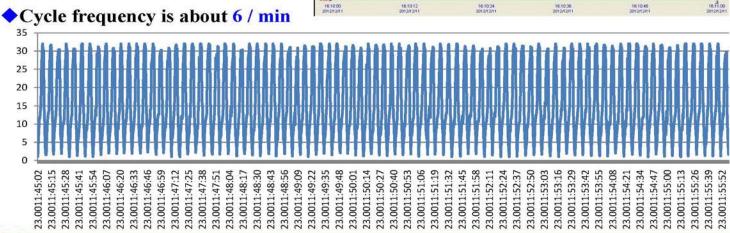

Phase II: Hydraulic cycle tests (up to 35 MPa)

- U.S. testing performed at the NASA WSTF
 - Real time 24/7 access to the acquisition computer
- China testing performed at the Institute of Process Equipment, Zhejiang University
 - Testing occurred during a site visit from U.S.
- Lessons learned were implemented in a revised test method protocol for the 2nd tank

8

IPHE Round Robin Test for Composite Pressure Vessel

Pressure Control


We Wash Standing

Pressure range

Low: $1 \le P \le 2$ MPa High: 31.04 MPa $\le P \le 32.04$ MPa

Dwell time = 0 s at the minimum pressure

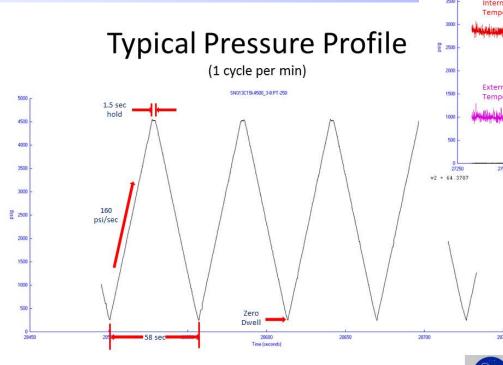
• Dwell time = 2 s at the maximum pressure

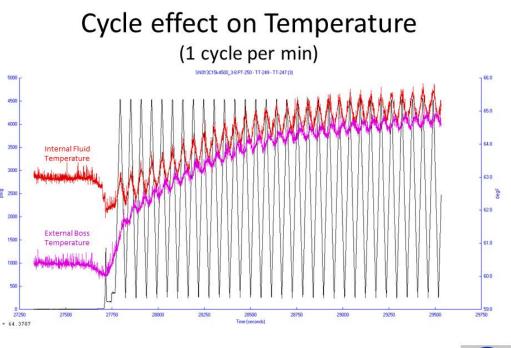
Institute of Process Equipment, Zhejiang University, China

IPHE Round Robin Test for Composite Pressure Vessel

Temperature Control

Pressure cycle is stopped in every 100 cycles to control the temperature. During the test:

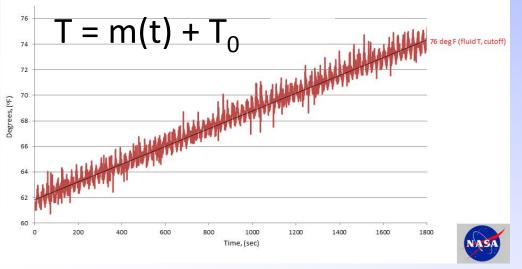

◆The temperature of the ambient air is controlled at 15-25℃.


- ◆ The temperature of the front end boss is controlled at 15-25℃.
- ◆The temperature of the back end boss is controlled at 15-25℃.
- ◆The temperature of the skin is controlled at 15-25℃.

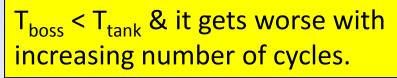
Institute of Process Equipment, Zhejiang University, China

Pass thru configuration with inline chiller. Temperatures reach steady state in about 30 minutes.

The boss temperature is lower than the in-tank temperature by about 0.28 °C

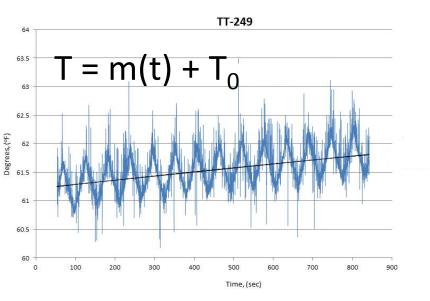

> Zero Carbon Energy Solutions

4/23/2013


3 Cycle / Minute: Dead ended, no chiller

Performing a linear regression on fluid temperature rise (TT-249)

Converting time scale to seconds and beginning at zero (3 cycles/min, dead-ended configuration)



In-tank T_{tank} - m = 0.00389 °C / sec $-T_0 = 16.57 \ ^{\circ}C$ > On the boss T_{boss} - m = 0.00367 °C / sec $-T_0 = 16.13 \ ^{\circ}C$ > After 100 cycles – T_{tank} = 24.35 °C – T_{boss} = 23.46 °C

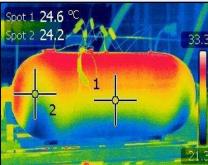
1, 3, 6 cycle / min; dead ended Note: the 6 cycle / min case was extrapolated from the 1 and 3 cycle / min cases, the data at 1 cycle / min was a 15 cycle sample

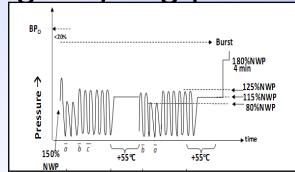
Performing a linear regression on tank fluid temperature rise (TT-249)

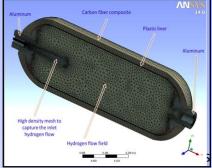
T_{tank} @ 1 cycle / min

- m = 0.00039 °C / sec
- − T₀ = 16.23 °C
- T_{tank} @ 3 cycle / min
 - m = 0.00389 °C / sec

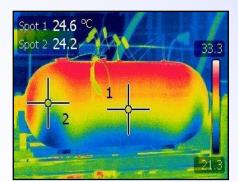
$$- T_0 = 16.57 °C$$

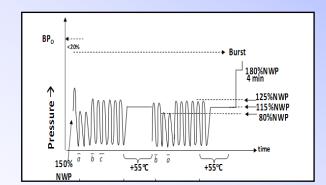

T_{tank} @ 6 cycle / min

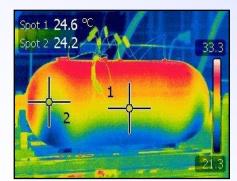

 $15 \le T_{tank} \le 25$ C (59 $\le T_{tank} \le 77$ F)

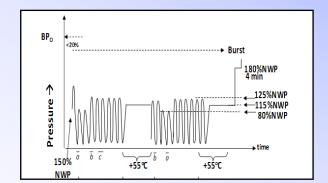

- After 100 cycles
 - − T₁ = 18.57 °C (T_{1p}~18.79 °C)
 - − T₃ = 24.35 °C (T_{3p}~24.58 °C)
 - − T₆ ~ 25.54 °C (T_{6p}~25.77 °C)

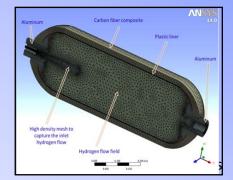
Zero Carbon Energy Solutions


- Pneumatic Testing @ 70 MPa
 - To be performed by JRC/EC and SNL/US
 - Gaps have been identified for executing pneumatic testing in both facilities
 - JRC facilities have been upgraded
 - SNL facilities are being upgraded
 - » (to be completed Q4 CY2013)
 - Both facilities have developed a detailed 3-D CFD and thermal transport numerical model of the in-tank filling/empting process



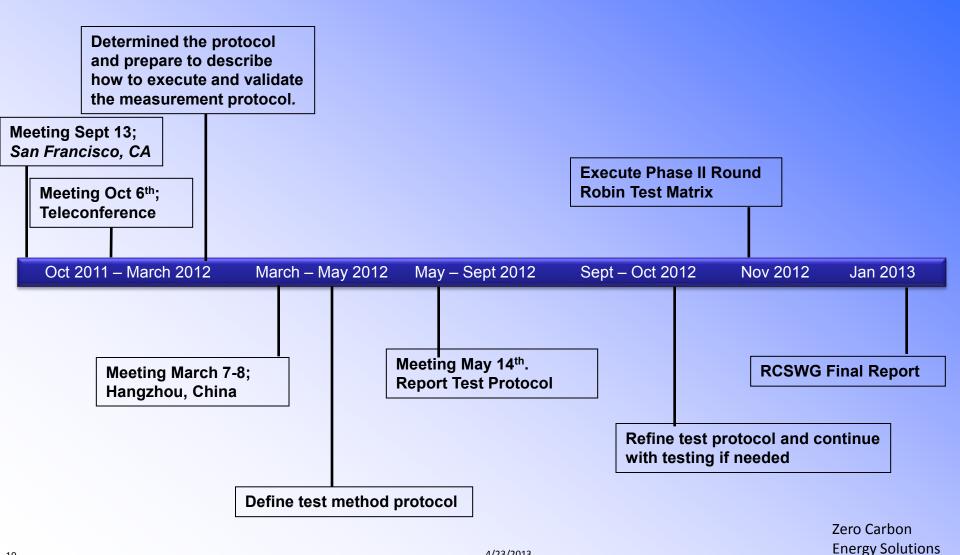

- Pneumatic Testing @ 70 MPa
 - Type IV COPV tanks supplied by CEA
 - Scheduled for delivery Q1 CY2013
 - Note: 2 of the 6 CEA 70 MPa tanks are slated for hydraulic testing
 - Phase I (Cycle test definition)
 - Modified/adapted from the hydraulic cycle test protocol
 - Completed Q1 CY2013



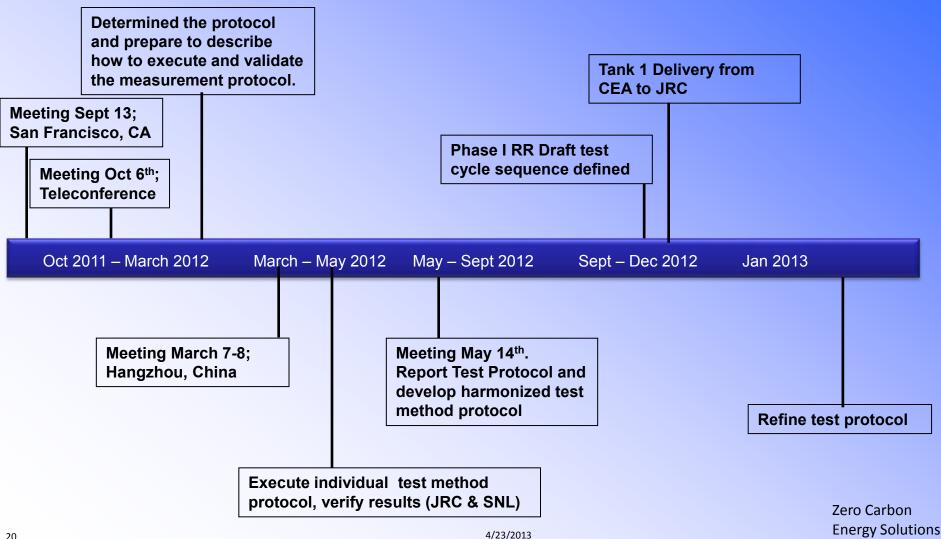


- Pneumatic Testing @ 70 MPa
 - Phase II (Cycle Execution)
 - Test will commence on one tank @ JRC, then with refinement of the protocol will proceed to SNL and continue @ JRC
 - Second round of CEA tanks may be instrumented with thermocouples at the time of manufacture

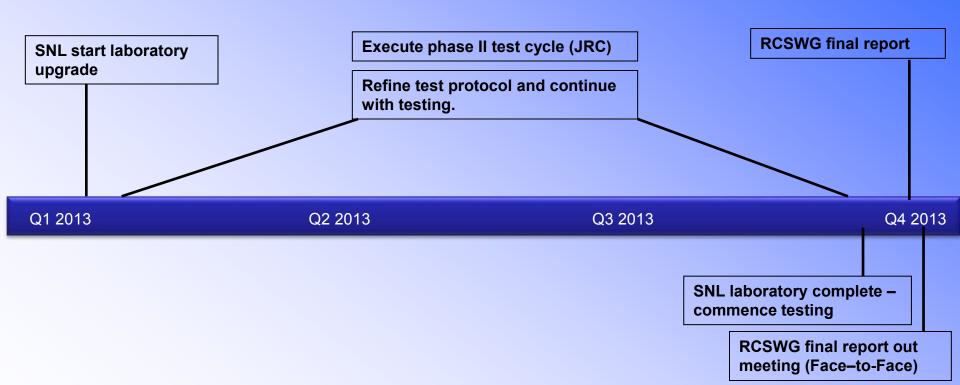
New Activities Proposed


- Launch a new RR on Fuel Quality Effects on Stack Performance
 - 5 member countries have been identified (all are invited) to comprise a task force to define this new RR
 - Endorsement from the SC received

New Activities Proposed


Fueling Station Metrology (Metering)

- Exploit the outcomes of the pneumatic part of the tank testing RR
 - As a direct result of the pneumatic RR there will be two laboratories (JRC and SNL) that can perform mass flow rate measurements compliant with metrology requirements (OIML R139 - EU and NIST Handbook 44 - US)
- This provides an opportunity for leveraging tank RR efforts: pre-normative issues related to metering
 - The decision on this proposed work will be taken after completion of the Tank RR


RCSWG RR Time Line - Hydraulic

RCSWG RR Time Line - Pneumatic

RCSWG RR Time Line - Pneumatic

Member Countries

Country	Point of Contact	Alternate
Brazil	Sergio Oliveira	Newton Pimenta
Canada	Aaron Hoskin	
China	Jinyang Zheng	
European Commission	Marc Steen	Pietro Moretto
France	Pierre Serre-Combe	Laurent Antonii
Germany	Thorsten Herbert	
India	Mishra Ambrish (retired)	
Italy	Romano Borchielline	Massimo Santarelli
Japan	Kazuo Koseki	Akiteru Maruta
New Zealand	Alister Gardiner	
Norway	Gerd Petra Haugom	
Russian Federation	Sergey V.Korobtsev	
United Kingdom	Stuart Hawksworth	
United States	Sunita Satyapal	Jay Keller

Note – Countries noted in dark blue are the most active

Note – No contacts yet from Australia, Iceland, South Africa and South Korea

Zero Carbon Energy Solutions

Next Steps

- Face-to-Face Meeting in Washington DC in conjunction with the DOE/FCT AMR
 - Discuss status and progress of the RR on tank testing
 - A focus on hydraulic testing
 - A discussion on pneumatic testing
 - A discussion on the outcome from the Fuel Quality stack testing Task Force
 - Standing agenda item to discuss release events

Thanks to the US/DOE FCT Office for the official endorsement of ICHS-5 2013

