A Biomimetic Approach to Metal-Organic Frameworks with High H₂ Uptake

Joe Zhou Texas A&M University May 15th, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 7/1/2007
- Project end date: 6/30/2013
- Percent complete: 95%

Budget

- Total project funding (DOE:\$1,342,819; Contractor: \$771,856)
- FY07 \$ 100,000 (Miami)
- ≻ FY08 \$0
- ≻ FY09 \$ 742,260 (TAMU)
- ≻ FY10 \$ 300,000 (TAMU)
- ≻ FY11 \$0
- ≻FY12 \$200,559 (TAMU)

≻ FY13 \$0

Barriers

> H_2 uptake at room temperature is low despite high uptake at 77 K

> ∆H needs to be in the range of 15 to 30 kJ/mol to reach high storage capacity at ambient temperature

Materials with high surface areas generally have low volumetric uptake

Partners

- ≻ ANL (APS)
- ➢ ORNL, LLNL, LBNL
- Seoul National University
- ➢ Dept. of Chem. Eng., TAMU
- KIT, Germany
- ≻ GM
- > SWRI¹
- ≻ RTI

Impact of Ultra-high Surface Area on H₂ Uptake Capacity

PPN-4(Si) has ultrahigh surface area ($S_{BET} = 6470 \text{ m}^2/\text{g}$) and is very stable. This surface area is one of the highest reported to date for any porous material. Yet, volumetric uptake (28 g/L) is low due to extremely low framework density (0.284 g/cm³) and lack of strong H₂-binding sites.

Functionalized PPNs for H₂ Adsorption

Optimization of the alignment of the coordinatively unsaturated metal centers for high heat of adsorption

Relevance

(Technical Challenges)

Approach/Milestone

Month/Year	Approach and Milestone
Nov-08	Milestone: Optimize the alignment of the coordinatively unsaturated metal centers of MOFs and construct a new MOF, PCN-12, which exhibits an exceptionally high H_2 uptake of 3.0 wt% (24.6 mg/cm ³) at 760 Torr and 77 K. The Hydrgeon adsorption heat of PCN-12 can reach as high as 12.5 kJ/mol at low coverage. (Status – 100% complete)
Nov-09	Milestone: Construct the catenation isomer pairs of PCN-6 and PCN-6'. H_2 sorption measurements demonstrate that framework catenation can be favorable. The excess hydrogen uptake of PCN-6 is 6.7 wt % at 77 K/50 bar. Inelastic neutron scattering (INS) studies reveal that the interaction is substantially stronger in catenated PCN-6. The catenation leads to increase in volumetric H_2 uptake and the MOF- H_2 interaction. (Status – 100% complete)
Nov-10	Milestone: Construct MOFs containing mesocavities with microwindows may serve as a general approach towards stable MOFs with higher surface areas. Design and synthesize porous polymer networks (PPNs) for hydrogen storage with high surface area, tunable pore size, and flexibility. Determine H_2 adsorption of PPNs with metal incorporation. (Status – 100% complete)
Nov-11	Milestone: Construct PPNs with ultrahigh surface area. Explore the possibility of incorporation of charge and additional light metal ions such as Li ⁺ , Na ⁺ or Mg ²⁺ into PPNs. The modified PPNs show improved hydrogen affinity and volumetric hydrogen uptake due to the increased density. (Status – 100% complete)
Jun-13	Milestone: Synthesize 20 stable and high-surface-area materials with incorporated metal atoms or cations. Demonstrate multiple dihydrogen bonded to a single open metal site with Zr-porphyrin-MOFs. Approach heat of adsorption15 kJ mol ⁻¹ . (Status – underway)

Enhance H₂ uptake

- Framework functionalization
- Framework post-synthetic modification
- Introducing metal ions

New Achievements

- A series of MOFs (PCN-30X) with new topology have been synthesized through Ligand Truncation Strategy, the H₂ uptakes (77 K and 1 atm) of there MOFs are among the highest (2.2 ~ 2.7 wt%, 17 ~ 21 g L⁻¹). PCN-305 exhibits very high H₂ total storage capacity (7.0 wt% at 60 bar and 77 K, which is 54 g/L calculated with crystal density)
- A MOF (PCN-309) with free carboxylic acid was synthesized; H₂ uptake was improved by metathesis (Zn to Cu), more importantly, the heat of adsorption was constant with the increasing of H₂ adsorption
- Metal-Ligand-Fragment Coassembly Strategy was successfully implemented to introduce functionalities, and heat of adsorption was much improved
- Highly stable Zr-MOFs were synthesized and initial metal-insertion study was carried out, these materials exhibit high surface area and high heat of adsorption
- Three strategies were applied to synthesize
 PPNs with anchors for metal insertion 8

ST018

Ligand Truncation Strategy

4-c 4-nodal net

PCN-307: R = CH₃ PCN-308: R = CF₃

	PCN-305	PCN-306	PCN-307	PCN-308
$S_{BET} (m^2 g^{-1})$	1651	1927	1377	1419
H ₂ uptake (wt%)	2.2	2.5	2.6	2.7
at 77 K and 1 bar				
H ₂ uptake (g L ⁻¹)	17	19	20	21
at 77 K and 1 bar				
Q _{st} (kJ mol ⁻¹)	6.5	6.4	6.2	6.5

Computer simulation is underway

ST018

High Pressure Data for PCN-305

Collaboration with Dr. Taner Yildirim (NIST)

High Pressure Data for PCN-305

On the left, we show the isotherm data and the corresponding virial-fits. Q_{st} is around 5.2 kJ/mol initially and then start to decrease down to 4 kJ/mol. These numbers are typical for copper-paddle wheel MOFs. The initial flat Qst is a sign that the main adsorption sites are copper sites!

Collaboration with Dr. Taner Yildirim (NIST)

Improved hydrogen uptake through metathesis

A Zeolite-like Tetrazole Framework with 24-Nuclear Zinc-Cages

Metal-Ligand-Fragment Coassembly (PCN-25)

ST018

Ultra-stable Metalloporphyrin-Zirconium MOF (PCN-224)

of multiple H_2 's bonded to a single open metal site ST018

30

25

20

15 2θ (degree)

10

1.0

Ultra-stable Metalloporphyrin-Zirconium MOF (PCN-224)

16

Ultra-stable Metalloporphyrin-Zirconium MOF (PCN-221)

Metalloporphyrin ligand

MOFs	BET surface area (m ² g ⁻¹)	Langmuir surface area (m ² g ⁻¹)	N_2 uptake (cm ³ g ⁻¹)	Pore volume (m ³ g ⁻¹)
Zr-PCN-221(no metal)	1936	2660	627	0.76
Zr-PCN-221(Fe)	1549	2149	507	0.61

Ultra-stable Metalloporphyrin-Zirconium MOF (PCN-221)

Porous Polymer Networks (PPNs) with Anchors for Metal Insertion

ST018

19

3. Anchors for metal insertion

Collaborations

Partners

- Dept. of Chem. Eng., TAMU, Theoretical Calculation
- KIT, Germany, Ligand Synthesis
- SWRI, Gas adsorption measurements
- LLNL, Critical Point Activation
- > ANL, APS, Crystal Structure Determination
- ➢ GM, High Pressure Gas Adsorption Measurements
- LBNL, Structure and Gas Adsorption Simulations
- RTI, Material Scale-up

Technology Transfer

- Working with industrial partners closely
- Ready to work with the Engineering CoE
- Working with a start-up company

Accomplishments

Demonstrated through experiments that :

- A series of MOFs (PCN-30X) with new topology have been synthesized through Ligand Truncation Strategy; the ligands for these MOFs are relatively easy to synthesize, and the H₂ uptakes (77 K and 1 atm) of there MOFs are among the highest (2.2 ~ 2.7 wt%, 17 ~ 21 g L⁻¹). PCN-305 exhibits very high H₂ total storage capacity (7.0 wt%, 54 g/L at 60 bar and 77 K) compared to other MOFs with similar surface area possibly due to the open metal site and suitable pore size.
- A MOF (PCN-309) with free carboxylic acid has been designed and synthesized; the H₂ uptake can be improved by metathesis (Zn to Cu), more importantly, the heat of adsorption (7.5 kJ mol⁻¹) is constant with the increasing of H₂ adsorption.
- Metal-Ligand-Fragment Coassembly Strategy has been successfully implemented to introduce functionalities, heat of adsorption can be much improved.
- Highly stable Zr-porphyrin-MOFs has been designed and synthesized and initial metal-insertion study shows these materials exhibit high surface area and high heat of adsorption
- Three strategies have been successfully applied to synthesize PPNs with anchors for metal insertion

Future Work

- Incorporate different metal cations (such as Fe²⁺) into porphyrin center of Zr-MOF.
 Perform elastic diffuse neutron-scattering studies to demonstrate more than one H₂ per open metal site in MOF.
- Measure H₂ storage capacity at high pressure for obtained high-surface-area and metal-incorporated materials.
- Closer investigation into PCN-309 for its constant heat of adsorption for H₂, theoretical calculation to verify the result.
- Continue to implement Ligand Truncation Strategy and Metal-Ligand-Fragment Coassembly Strategy with elongated ligands with different functionalities.
- Optimize the procedure for PPNs for higher surface area, then incorporate multivalent metals, such as V³⁺, Fe³⁺,Ti³⁺, etc.

Summary Table (New Materials)

Material	S _{BET} (m²/g)	∆H _{ads} (kJ/mo I)	V _{ads} at 77 K and 1 atm (wt%)	V _{ads} at 77 K and 1 atm (g L ⁻¹)	V _{ads} at 77 K and 60 bar (wt%)	V _{ads} at 77 K and 60 bar (g L⁻¹)	Slide
PCN-305, -306, -307, -308	1651, 1927, 1377, 1419	6.5, 6.4, 6.2, 6.5	2.2, 2.5, 2.6, 2.7	17, 19, 20, 21	7.0	54	9,10,11
PCN-309'	766	7.5	2.0	23			12
Zeolite- <i>like</i> Tetrazole MOF	1151	8.1	2.3	36			13
PCN-224-Zr, -224-Fe, -224-Ni	2200 2300 2600	8.7, 8.0, 8.5	1.8, 1.6, 1.6	9.5, 8.5, 8.2			15,16
PCN-221, -221-Fe	1936, 1549	6.6, 7.0	1.9, 1.8	14, 13			17,18
PCN-25-SO₃H, -SO₃Na	940, 1798	7.8, 9.0	0.89, 0.61				14
BIPPN-101	1096	7.8	1.8				19