

Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

P. Pfeifer¹, C. Wexler¹, P. Yu¹, J. Burress¹, G. Suppes², F. Hawthorne^{1,3,4}, S. Jalisatgi⁴, M. Lee³, D. Robertson^{3,5}

¹Dept. of Physics, ²Dept. of Chemical Engineering, ³Dept. of Chemistry, ⁴Dept. of Radiology, ⁵University of Missouri Research Reactor

University of Missouri, Columbia, MO 65211

2013 DOE Hydrogen Program Annual Merit Review, May 13-17, 2013

Project ID #ST19

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date:
 - September 1, 2008
- Project end date:
 - November 30, 2014
- Percent complete: 80%

Budget

- Total project funding:
 - DOE share: \$1,899K
 - Contractor share: \$514K
- Funding for FY 2012
 - DOE share: \$214K
 - Contractor share: \$102K
- Funding for FY 2013
 - DOE share: \$300K
 - Contractor share: \$124K (est.)

Barriers

- System weight & volume
- System cost
- Charging/discharging rates
- Thermal management
- Lack of understanding of hydrogen physisorption & chemisorption

Partners

- T. Gennett, L. Simpson, P. Parilla NREL
- R. Olsen ORNL
- C. Brown, Y. Liu NIST
- D. Waddill Missouri U. Science & Technology
- L. Firlej U. Montpellier II, France
- B. Kuchta U. Marseille, France

Objectives & Relevance

- Fabricate boron-doped monolithic nanoporous carbon for high-capacity reversible hydrogen storage (March 2012-March 2013)
- Create high-surface-area monoliths with minimum pore space, for high volumetric storage capacity
- Dope materials with 0-20 wt% B:(B+C), for high binding energy for hydrogen
- Expect B-doped monoliths with surface areas ~ 2700 m²/g, binding energies 10-15 kJ/mol, volumetric storage capacity >40 g/L (material), and gravimetric storage capacity >5.5 wt% (material) at 100 bar and room temperature

Characterize materials & demonstrate storage performance

- Establish high surface areas and low porosity of monoliths
- Establish uniform boron concentration in monoliths
- Establish that boron is completely substituted in carbon lattice (sp² B-C bonds; FTIR, XPS)
- Establish enhanced binding energy and H₂ adsorption on B-doped materials
- Determine H₂ sorption kinetics and temperature evolution during charging/discharging of monoliths

Relevance: Sorption Landscape

Approach

Phase 2 Tasks	Milestones
4—Manufacture, characterize, and optimize B- doped monoliths	
4.1—Optimize B-doping of best U. Missouri carbon powder in region 0-20 wt% B:(B+C)	 FY 2013 Protocol for optimum B-doping path; lowest B:C above which further B does not improve H₂ adsorption Establish B-doped carbon powders with ΔH > 12 kJ/mol, and boron conc. >10 wt%, completely substituted within carbon lattice
4.2—B-dope current U. Missouri monoliths and characterize H ₂ storage	 FY 2013 Establish uniform B-concentration in doped monoliths and that boron is completely substituted in carbon lattice Establish that performance of doped monoliths is comparable to doped powders
4.3—B-dope alternate powder precursors and respective monoliths	FY 2014 Establish that Task 4.1/4.2-doped materials are superior to alternate doped materials
4.4—Measure H_2 storage and kinetics on B-doped monoliths in 0.5-liter H_2 Test Fixture at 295 K and on Sievert apparatus at 77 K	 FY 2014 1.Establish B-doped monoliths with Σ ~ 2700 m²/g, ΔH = 10-15 kJ/mol, gravimetric storage capacity >5.5 wt% (material), volumetric storage capacity >40 g/L, at 100 bar & 295 K 2.Establish B-doped monoliths with Σ ~ 2700 m²/g, ΔH = 10-15 kJ/mol, gravimetric storage capacity >12 wt%

Best Performing Carbons

	Max. Grav. Excess (wt. % material)	Gravimetric Storage (wt. %, material)	Volumetric Storage (g/L material)	Surface Area (m²/g)	Isosteric Heat (kJ/mol)
3K-600C, 80 K , 200 bar	6.3 (60 bar)	12.0	63	2,500	_
3K-600C, 303 K, 200 bar	1.2	3.3	16	2,500	Zero coverage: 7 High coverage: 6
4K Monolith (25% binder), 297 K, 100 bar	0.86	2.5	9.5	2,100	-
3K-120C, 1.5 kg tank , 296 K, 100 bar	0.80	3.0	8.8	2,600	-
3K-H60 (I,A), B:C = 8.9% 303 K, 200 bar	1.5	3.4	18	2,100	Zero coverage: 17 High coverage: 10
Predicted 2009 (B:C = 10% , 2600 m²/g), 303 K, 120 bar	-	5.2	33	2,600	10-12

B-doped carbons show strong potential to meet DOE targets at room temperature

FY 2012 Ann. Prog. Rep.: B-doped 3K-H60(I,A), 8.9 wt% B

- H₂ excess adsorption per unit surface area (areal excess adsorption, AEA) depends only on how strongly surface binds H₂, not on surface area or pore volume. 40% increase in AEA at 200 bar: high binding energies on majority of surface sites
- Enthalpy of adsorption, ΔH, increased from 6 kJ/mol (0.0 wt% B) to 10 kJ/mol (8.9 wt% B)
- Film thickness *t* from ΔH analysis: t = 0.6 nm at 303 K (AMR 2010: t = 0.4 nm at 77 K)
- Task: Reproduce B-doped sample & high ΔH; validate at NREL

New U. Missouri undoped carbon: 3K-0046

- Room temperature and LN₂ isotherms (adsorption and desorption) at NREL and U. Missouri agree; measured on same aliquot
- U. Missouri utilized LN₂ bath, replicating LN₂ bath at NREL
- Difference in LN₂ boiling temperature due to difference in elevation

New U. Missouri B-doped carbon: 3K-H85(I,A), 6.7 wt% B

30 °C and 0 °C isotherms at NREL and U. Missouri agree

- Reproduced: B-doping/annealing (600 °C) reduces surface area by <20%</p>
- Reproduced: Both AEA and ΔH increase with increasing B concentration
- AEA, ΔH increase nonlinearly: largest increase from 6.7 to 8.9 wt% B
- 3K-H85(I,A): ΔH increased from 5 kJ/mol (0.0 wt% B) to 7 kJ/mol (6.7 wt% B)
- 3K-H60(I,A): ΔH increased from 6 kJ/mol (0.0 wt% B) to 10 kJ/mol (8.9 wt% B)
- Possible reason for nonlinearity: free-radical B atoms in 3K-H85(I,A) may have been converted to B⁻ anions

B-doping monitored by x-ray photoelectron spectroscopy (XPS)

- Observed: expected B₁₀H₁₄ peak at 189 eV
- Observed: unexpected peak at 193 eV; attributed to B-O bonds from reaction of B₁₀H₁₄ with oxygen in air (transfer to sample chamber) or in carbon

Thermogravimetric analysis/mass spectroscopy: 3K-H89(I,A), 8.6 wt% B

- H₂O, CO, CO₂: from sample exposure to air & removal of surface-bound oxygen
- 350 °C: CH₄ from decomposition of B₁₀H₁₄ on C
- 600-1000 °C: boron loss in form of B₂H₆
- Boron loss, from 8.9 to 6.7 wt%, at 600-1000 °C, observed previously by PGAA
- Rise of CO, CO₂ at >600 °C: removal of surface-O requires >600 °C, also on B-free carbons

B-C bonds from microscopic Fourier transform infrared spectroscopy (FTIR) New B-doped samples: 3K-H82(I,A), 3K-H82(I,B)

	wt% B
3K-H82(I,A): annealed at 600 °C	6.7
3K-H82(I,B): annealed at 1000 °C	4.4

- Improved resolution of B-C band by careful sample post-treatment & aperture selection
- B-C band position does not change with sample preparation (2012, 2013) and annealing temp.: same B-C bonds in all samples
- Smaller signal in 4.4 wt% B than in 6.7 wt%: FTIR can quantify conc. of B-C bonds in sample

Fabrication of B-doped monoliths

- Objective 1: Create high-surface-area, high-density monoliths (sub-nm pores only), for high volumetric storage capacity. In addition: sub-nm pores host high H₂ binding energies
- Objective 2: Dope monoliths with 0-20 wt% B, for high H₂ binding energy
- Objective 3: Determine H₂ sorption kinetics and temperature evolution during charging/discharging of monoliths
- Achieved: First fabricate carbon monoliths from carbon powder, then B-dope by vapor deposition and pyrolysis of B₁₀H₁₄. Alternative—first B-dope powder, then fabricate monoliths—not pursued
- Achieved: B₁₀H₁₄ vapor penetrates monolith, but creates lower B-concentration inside (next slide)
- Expect (next slide): (i) Low B-concentration inside monolith can be improved (ii) Maximum monolith dimensions for uniform B-concentration in monolith
- Achieved: High binding energy on new undoped monoliths (next slides)

Spatial distribution of boron in doped monoliths

- 1 cm x 2 cm monolith, from 3.5"-inch monolith BR2.5K-0162, was B-doped with B₁₀H₁₄ (solid-liquid-gas route, I): 4.5 wt% B (total)
- Monolith was oriented vertically, with solid/liquid $B_{10}H_{14}$ underneath. Significant B-conc. gradients 4.2 wt% B at (r, z) =(0 cm, 0.25 cm): successful doping from liquid phase 3.8 wt% B at (r, z) = (0.45 cm, 0.85 cm): successful doping from gas phase Drop from 3.8 to 1.6 wt% B at z = 0.85 cm: 5.8 wt%/cm. Reason: $B_{10}H_{14}$ on C: 70-80 kJ/mol (2012 AMR) Drop from 4.9 to 2.3 wt% B at r = 0 cm: 4.4 wt%/cm

- Ongoing: (i) Dope suspended monoliths; (ii) Minimize diffusion-limited adsorption of B₁₀H₁₄ by using carrier gas (Ar)

New undoped 3.5" monoliths: improved H₂ performance

170 °C

BR3K-0156

1.00

Compaction at 230 °C favors lower porosity, thus high volumetric storage capacity

850 °C

 BR3K-0152: high gravimetric excess adsorption due to high surface area; but low areal excess adsorption (AEA) due to abundance of supra-nm pores

 $1700 \text{ m}^2/\text{g}$

0.67

 BR3K-0156: high AEA (high binding energy) due to dominance of sub-nm pores AEA at 200 bar and room temp.: 4.3 µg/m²—higher than B-doped powder 3K-H85(I,A)

Kinetics on undoped 3.5" monolith: charging/discharging rates, thermal management

Heating due to adiabatic compression and heat of adsorption

- BR3K-0156: monolith (43 g) with highest binding energy
- Measurements in 0.5-L Test Fixture
- Charging in 35-bar/33-min steps: maximum temperature excursion: +0.3 °C
- Excursion largest at 0-150 bar (heat of adsorption large when H₂ uptake large: low pressure)
- Temperature drops, from maximum (27.3 °C), first exponentially with time constant of 2 min, then linearly at 0.2 °C/h
- Drop because monolith in contact with large steel sample chamber (heat sink)

Collaborations

- **NREL** (Federal): L. Simpson, P. Parilla, T. Gennett—Validation of H₂ uptake
- Advanced Photon Source/ANL (Federal): J. Ilavsky—Ultra-small-angle x-ray scattering (GUP-10069, GUP-20661)
- NIST (Federal): Y. Liu, C. Brown—small-angle neutron scattering with in-situ, adsorbed H₂
- U. Montpellier II & U. Marseille, France (Academic): L. Firlej & B. Kuchta—GCMC simulations
- Wroclaw U. Technology, Poland (Academic): S. Roszak—adsorption potentials for H₂ sorption on B-doped materials from ab initio quantum-chemical computations
- ORNL (Federal): M. Stone, R. Olsen—incoherent inelastic neutron scattering with insitu, adsorbed H₂
- U. Marseille, France (Academic): P. Llewellyn—micro-calorimetric determination of isosteric heat of adsorption
- U. Missouri (Academic): M. Greenlief—XPS analysis; J. Burress—sorption measurements; H. Taub, D. Robertson—neutron scattering & PGAA
- Missouri U. of Science & Technology (Academic): D. Waddill—XPS analysis

Future Work: Plans for 2013/14

- Optimize B-doping of granular materials & demonstrate performance
- Improve oxygen-free preparation of undoped/doped carbon (deoxygenation and annealing at 1200 °C)
- Suppress conversion of B[•] free radicals into B⁻ anions; test B-doped materials for free radicals by electron paramagnetic resonance spectroscopy (EPR); determine XPS and FTIR spectra of anionic sp² B⁻-C bonds on model compound; estimate H₂ binding energy on B⁻-substituted carbon from quantum-chemical calculations
- Monitor B-doping with XPS under oxygen-free conditions, NMR, and elemental mapping of B with energy-filtered transmission electron microscopy (EFTEM)
- Map out enthalpy of adsorption, ΔH, and areal excess adsorption for H₂, at 77 K and 273 K, on B-doped powders with 0-20 wt% B. Improve determination of ΔH at high coverage from Clausius-Clapeyron
- Optimize B-doping of monoliths & demonstrate performance
- Optimize undoped monoliths for high surface area and small pore volume
- Improve B-doping of monoliths; minimize B-concentration gradients
- Monitor B-doping by XPS, FTIR, EFTEM, NMR
- Monitor performance of doped monoliths by ΔH and areal excess adsorption

Project Summary, 2012-13

- B-doped carbons at *room temperature*, *high coverage* (majority of surface sites) Unexpected nonlinear dependence of binding energy on B concentration: 3K-H60(I,A), 8.9% wt% B: Δ*H* increased from 6 to 10 kJ/mol; AEA increased by 40% 3K-H85(I,A), 6.7% wt% B: Δ*H* increased from 5 to 7 kJ/mol; AEA increased by 5% 3K-H85(I,A): validated at NREL (77 K and RT)
- Highest surface area of B-doped materials to date: 2200 m²/g Top AEA's to date (RT, 200 bar): 3.9, 4.1, 7.1 µg/m²
- XPS established two types of B-C bonds: (a) sp² bonds (90%, enhance H₂ binding);
 (b) B₄C bonds (10%, do not enhance H₂ binding)
- XPS, TGA-MS, and PGAA established:
 - Presence of B-O bonds (inert up to 600 °C)
 - Loss of B in form of B_2H_6 at 600-1000 °C (20-30% loss)
 - Loss of C in form of CH₄, CO, CO₂ at 300-1000 °C
- Microscopic FTIR established qualitative *concentration* of B-C bonds
- Successful B-doping of monoliths with B₁₀H₁₄. Anisotropic liquid-gas reservoir:
 - B-conc. gradient from liquid side: 5.8%/cm
 - B-conc. gradient from gas side: 4.4%/cm
- Top undoped monoliths to date: 2200 m²/g surface area; 4.3 µg/m² AEA
- Temperature evolution during charging of undoped 3.5" monolith (RT):
 - $-\Delta T$ = +0.3 °C for ΔP = 35 bar
 - *T* returns to original temp. with time constant of 2 min & 0.2 °C/h