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Timeline 
 Project start date: 
 - September 1, 2008 
 Project end date:  
 - November 30, 2014 
 Percent complete: 80% 

Budget 
 Total project funding: 
 - DOE share: $1,899K 
 - Contractor share: $514K 
 Funding for FY 2012 
 - DOE share: $214K 
 - Contractor share: $102K 
 Funding for FY 2013 
 - DOE share: $300K 
 - Contractor share: $124K (est.) 

Barriers 
 System weight & volume 
 System cost 
 Charging/discharging rates 
 Thermal management 
 Lack of understanding of hydrogen 

physisorption & chemisorption   

Partners 
 T. Gennett, L. Simpson, P. Parilla – NREL 
 R. Olsen – ORNL 
 C. Brown, Y. Liu – NIST 
 D. Waddill – Missouri U. Science & Technology 
 L. Firlej – U. Montpellier II, France 
 B. Kuchta – U. Marseille, France 

Overview 
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Objectives & Relevance 
Fabricate boron-doped monolithic nanoporous carbon for high-capacity 
reversible hydrogen storage (March 2012-March 2013) 
 Create high-surface-area monoliths with minimum pore space, for high volumetric 

storage capacity 

 Dope materials with 0-20 wt% B:(B+C), for high binding energy for hydrogen 

 Expect B-doped monoliths with surface areas ~ 2700 m2/g, binding energies 10-15 
kJ/mol, volumetric storage capacity >40 g/L (material), and gravimetric storage 
capacity >5.5 wt% (material) at 100 bar and room temperature 

 

Characterize materials & demonstrate storage performance 
 Establish high surface areas and low porosity of monoliths 

 Establish uniform boron concentration in monoliths 

 Establish that boron is completely substituted in carbon lattice (sp2 B-C bonds; FTIR, 
XPS) 

 Establish enhanced binding energy and H2 adsorption on B-doped materials 

 Determine H2 sorption kinetics and temperature evolution during charging/discharging 
of monoliths  
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Relevance: Sorption Landscape 
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     Methane 
~80 bar, 293 K 

MOF-210 
80 bar,77 K 

MOF-5 
80 bar,77 K 

MgH2 

MOF-177 
80 bar,77 K 

NaAlH4 

AB 

3K (600C) 
100 bar, 80 K 

MSC-30  
100 bar , 80 K 

3K-H60 (B-doped) 
190 bar , 303 K 
3K-600C 
190 bar ,303 K 

3K-600C 
100 bar , 303 K 

MSC-30 
100 bar,303 K  

Alane  (AlH3) 

Physical adsorption 
 

Chemical hydride 

Complex hydride 

Complex hydride 

HS;0B 
100 bar,303 K 

Compressed H2 
100 bar, 80 K  
 

Compressed H2 
100 bar, 303 K  
 

MOFs: crystal density 
 
U. Missouri carbons: “crystal” density 

Powder 

3K-H60, 2500 m2/g   
190 bar, 303 K 

Predicted 2009, 
10 wt% B * 
120 bar, 298 K 
U. Missouri 
Phase 2 Target  

Predicted 2009, 
10 wt% B * 
120 bar, 77 K 
U. Missouri 
Phase 2 Target  

* L. Firlej et al., J. 
Chem. Phys. 131, 
164702 (2009) 



Approach 
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Technical Accomplishments 
Best Performing Carbons 

Max. Grav. 
Excess  

(wt. % material) 

Gravimetric 
Storage 
 (wt. %, 

material) 

Volumetric 
Storage  

(g/L material) 
Surface Area 

(m2/g) Isosteric Heat (kJ/mol) 

3K-600C,  
80 K, 200 bar 6.3 (60 bar) 12.0 63 2,500 - 

3K-600C, 
303 K, 200 bar 1.2 3.3 16 2,500 Zero coverage: 7 

High coverage: 6 

4K Monolith (25% 
binder), 
297 K, 100 bar 

0.86 2.5 9.5 2,100 - 

3K-120C,  
1.5 kg tank, 
296 K, 100 bar 

0.80 3.0 8.8 2,600 - 

3K-H60 (I,A),  
B:C = 8.9% 
303 K, 200 bar 

1.5 3.4 18 2,100 Zero coverage: 17 
High coverage: 10 

Predicted 2009 
(B:C = 10%,  
2600 m2/g),  
303 K, 120 bar 

- 5.2 33 2,600 10-12 

B-doped carbons show strong potential to meet DOE targets at room temperature 
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Technical Accomplishments 
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303 K 

303 K 

 H2 excess adsorption per unit surface area (areal excess adsorption, AEA) depends only on 
how strongly surface binds H2, not on surface area or pore volume.  40% increase in AEA at 
200 bar: high binding energies on majority of surface sites 

 Enthalpy of adsorption, ΔH, increased from 6 kJ/mol (0.0 wt% B) to 10 kJ/mol (8.9 wt% B) 
 Film thickness t from ΔH analysis: t = 0.6 nm at 303 K  (AMR 2010: t = 0.4 nm at 77 K) 
 Task: Reproduce B-doped sample & high ΔH; validate at NREL 

FY 2012 Ann. Prog. Rep.: B-doped 3K-H60(I,A), 8.9 wt% B 

0.0 wt% B 

6.7 wt% B 

8.9 wt% B 



Technical Accomplishments 
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Room temperature Liquid nitrogen (LN2) temp.  
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 Room temperature and LN2 isotherms (adsorption and desorption) at NREL and U. Missouri 
agree; measured on same aliquot 

 U. Missouri utilized LN2 bath, replicating LN2 bath at NREL 
 Difference in LN2 boiling temperature due to difference in elevation 

New U. Missouri undoped carbon: 3K-0046 



Technical Accomplishments 
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 30 ºC and 0 ºC isotherms at NREL and U. Missouri agree 
 Reproduced: B-doping/annealing (600 ºC) reduces surface area by <20% 
 Reproduced: Both AEA and ΔH  increase with increasing B concentration 
 AEA, ΔH increase nonlinearly: largest increase from 6.7 to 8.9 wt% B 
 3K-H85(I,A): ΔH increased from 5 kJ/mol (0.0 wt% B) to 7 kJ/mol (6.7 wt% B) 
 3K-H60(I,A): ΔH increased from 6 kJ/mol (0.0 wt% B) to 10 kJ/mol (8.9 wt% B) 
 Possible reason for nonlinearity: free-radical B atoms in 3K-H85(I,A) may have been 

converted to B– anions 

New U. Missouri B-doped carbon: 3K-H85(I,A), 6.7 wt% B 
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 Observed: expected B10H14 peak at 189 eV 
 Observed: unexpected peak at 193 eV; attributed to B-O bonds from reaction 

of B10H14 with oxygen in air (transfer to sample chamber) or in carbon 

B-doping monitored by x-ray photoelectron spectroscopy (XPS) 
0. Decaborane/carbon mixture 
1. Decaborane is deposited, but has not reacted 
2. Decaborane reacts/decomposes 
3. After annealing at 600 0 C: 3K-H89(I,A), 8.6 wt% B 

XPS spectrum 
B1s electrons 0 

0 
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 sp2 boron in carbon
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At 250 oC 

Technical Accomplishments 

 120 ºC, no B10H14: B10H14 evaporated in XPS UHV chamber  
 250 ºC, no B-C or B-B peak: B10H14 has not decomposed yet 
 Final material, 3K-H89(I,A), 8.6 wt% B: 
   – 188 eV peak: sp2 B-C bonds [*]; enhanced binding of H2 
   – 187 eV peak: B4C B-C bonds [*]; unenhanced binding of H2 
   – 6 out of 7 B-C bonds are sp2 bonds 
   – B-B bonds: may be present, but buried under B-C peaks 
   – 192 eV peak: B-O bonds survive at 600 ºC (undesirable) 
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Anneal at 
600 oC 

2 

3 

1 

Deposition at 
120 oC 

* Bult et. al., J. Phys. Chem 
  C 116, 26138 (2012) 

* 
* 

XPS spectra 
B1s electrons 
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Thermogravimetric analysis/mass spectroscopy: 3K-H89(I,A), 8.6 wt% B 

 

 H2O, CO, CO2: from sample exposure to air & removal of surface-bound oxygen 
 350 ºC: CH4 from decomposition of B10H14 on C 
 600-1000 ºC: boron loss in form of B2H6 
 Boron loss, from 8.9 to 6.7 wt%, at 600-1000 ºC, observed previously by PGAA 
 Rise of CO, CO2 at >600 ºC: removal of surface-O requires >600 ºC, also on B-free carbons 

44 m/z; CO2 

17 m/z; H2O (OH+) 

28 m/z; CO 

18 m/z; H2O 

15 m/z; CH4 (CH3
+) 

26 m/z; B2H6 (B2H4
+) 

Decaborane deposited on carbon  
TGA: sample mass vs. temp. 
MS: mass/charge of volatiles vs. temp. 

2 3 

1 

TGA 



Technical Accomplishments 

 Improved resolution of B-C band by careful sample 
post-treatment & aperture selection 

 B-C band position does not change with sample 
preparation (2012, 2013) and annealing temp.: 
same B-C bonds in all samples 

 Smaller signal in 4.4 wt% B than in 6.7 wt%: FTIR 
can quantify conc. of B-C bonds in sample  

wt% B  

3K-H82(I,A): 
annealed at 600 ºC 6.7 

3K-H82(I,B): 
annealed at 1000 ºC 4.4 
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B-C bonds from microscopic Fourier transform infrared spectroscopy (FTIR) 
New B-doped samples: 3K-H82(I,A), 3K-H82(I,B) 



Technical Accomplishments 

 Objective 1: Create high-surface-area, high-density monoliths (sub-nm pores only), for 
high volumetric storage capacity.  In addition: sub-nm pores host high H2 binding 
energies 

 Objective 2: Dope monoliths with 0-20 wt% B, for high H2 binding energy 
 Objective 3: Determine H2 sorption kinetics and temperature evolution during 

charging/discharging of monoliths  
 

 Achieved: First fabricate carbon monoliths from carbon powder, then B-dope by vapor 
deposition and pyrolysis of B10H14.  Alternative—first B-dope powder, then fabricate 
monoliths—not pursued  

 Achieved: B10H14 vapor penetrates monolith, but creates lower B-concentration inside 
(next slide) 

 Expect (next slide): (i) Low B-concentration inside monolith can be improved 
   (ii) Maximum monolith dimensions for uniform B-concentration in monolith 
 Achieved: High binding energy on new undoped monoliths (next slides) 
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Fabrication of B-doped monoliths 



Technical Accomplishments 
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Spatial distribution of boron in doped monoliths 

• 1 cm x 2 cm monolith, from 3.5”-inch monolith BR2.5K-0162, was B-doped with B10H14 (solid-liquid-gas 
route, I): 4.5 wt% B (total) 

• Monolith was oriented vertically, with solid/liquid B10H14 underneath.  Significant B-conc. gradients 
• 4.2 wt% B at (r, z) =(0 cm, 0.25 cm): successful doping from liquid phase 
• 3.8 wt% B at (r, z) = (0.45 cm, 0.85 cm): successful doping from gas phase 
• Drop from 3.8 to 1.6 wt% B at z = 0.85 cm: 5.8 wt%/cm.  Reason: B10H14 on C: 70-80 kJ/mol (2012 AMR) 
• Drop from 4.9 to 2.3 wt% B at r = 0 cm: 4.4 wt%/cm 
• Ongoing: (i) Dope suspended monoliths; (ii) Minimize diffusion-limited adsorption of B10H14 by using carrier 

gas (Ar) 

2 cm 

1 cm 
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New undoped 3.5” monoliths: improved H2 performance 

 Compaction at 230 ºC favors lower porosity, thus high volumetric storage capacity 
 BR3K-0152: high gravimetric excess adsorption due to high surface area; but low areal 

excess adsorption (AEA) due to abundance of supra-nm pores 
 BR3K-0156: high AEA (high binding energy) due to dominance of sub-nm pores 
   AEA at 200 bar and room temp.: 4.3 µg/m2—higher than B-doped powder 3K-H85(I,A) 

2012-13 results 
2011 results 
Measured on 
0.5-L Test 
Fixture 



Technical Accomplishments 
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• BR3K-0156: monolith (43 g) with highest binding 
energy 

• Measurements in 0.5-L Test Fixture 
• Charging in 35-bar/33-min steps: maximum 

temperature excursion: +0.3 ºC 
• Excursion largest at 0-150 bar (heat of adsorption 

large when H2 uptake large: low pressure)  
• Temperature drops, from maximum (27.3 ºC), 

first exponentially with time constant of 2 min, 
then linearly at 0.2 ºC/h 

• Drop because monolith in contact with large steel 
sample chamber (heat sink) 

Kinetics on undoped 3.5” monolith: charging/discharging rates, thermal management 
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Collaborations 

 NREL (Federal): L. Simpson, P. Parilla, T. Gennett—Validation of H2 uptake 

 Advanced Photon Source/ANL (Federal): J. Ilavsky—Ultra-small-angle x-ray 
scattering (GUP-10069, GUP-20661)  

 NIST (Federal): Y. Liu, C. Brown—small-angle neutron scattering with in-situ, 
adsorbed H2 

 U. Montpellier II & U. Marseille, France (Academic): L. Firlej & B. Kuchta—GCMC 
simulations 

 Wroclaw U. Technology, Poland (Academic): S. Roszak—adsorption potentials for 
H2 sorption on B-doped materials from ab initio quantum-chemical computations 

 ORNL (Federal): M. Stone, R. Olsen—incoherent inelastic neutron scattering with in-
situ, adsorbed H2 

 U. Marseille, France (Academic): P. Llewellyn—micro-calorimetric determination of 
isosteric heat of adsorption 

 U. Missouri (Academic): M. Greenlief—XPS analysis; J. Burress—sorption 
measurements; H. Taub, D. Robertson—neutron scattering & PGAA 

 Missouri U. of Science & Technology (Academic): D. Waddill—XPS analysis 
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Future Work: Plans for 2013/14 
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 Optimize B-doping of granular materials & demonstrate performance 
 Improve oxygen-free preparation of undoped/doped carbon (deoxygenation and 

annealing at 1200 ºC) 

 Suppress conversion of B• free radicals into B– anions; test B-doped materials for free 
radicals by electron paramagnetic resonance spectroscopy (EPR); determine XPS 
and FTIR spectra of anionic sp2 B–-C bonds on model compound; estimate H2 binding 
energy on B–-substituted carbon from quantum-chemical calculations 

 Monitor B-doping with XPS under oxygen-free conditions, NMR, and elemental 
mapping of B with energy-filtered transmission electron microscopy (EFTEM) 

 Map out enthalpy of adsorption, ΔH, and areal excess adsorption for H2, at 77 K and 
273 K, on B-doped powders with 0-20 wt% B.  Improve determination of ΔH at high 
coverage from Clausius-Clapeyron 

 

 Optimize B-doping of monoliths & demonstrate performance 
 Optimize undoped monoliths for high surface area and small pore volume 

 Improve B-doping of monoliths; minimize B-concentration gradients 

 Monitor B-doping by XPS, FTIR, EFTEM, NMR 

 Monitor performance of doped monoliths by ΔH and areal excess adsorption 

 

 



Project Summary, 2012-13 
 B-doped carbons at room temperature, high coverage (majority of surface sites)  
     Unexpected nonlinear dependence of binding energy on B concentration: 
     3K-H60(I,A), 8.9% wt% B: ΔH increased from 6 to 10 kJ/mol; AEA increased by 40% 
     3K-H85(I,A), 6.7% wt% B: ΔH increased from 5 to 7 kJ/mol; AEA increased by 5% 
     3K-H85(I,A): validated at NREL (77 K and RT) 

 Highest surface area of B-doped materials to date: 2200 m2/g 
     Top AEA’s to date (RT, 200 bar): 3.9, 4.1, 7.1 µg/m2 

 XPS established two types of B-C bonds: (a) sp2 bonds (90%, enhance H2 binding);     
(b) B4C bonds (10%, do not enhance H2 binding) 

 XPS, TGA-MS, and PGAA established: 
     – Presence of B-O bonds (inert up to 600 ºC) 
     – Loss of B in form of B2H6 at 600-1000 ºC (20-30% loss) 
     – Loss of C in form of CH4, CO, CO2 at 300-1000 ºC 

 Microscopic FTIR established qualitative concentration of B-C bonds 

 Successful B-doping of monoliths with B10H14.  Anisotropic liquid-gas reservoir: 
     – B-conc. gradient from liquid side:  5.8%/cm 
     – B-conc. gradient from gas side: 4.4%/cm 

 Top undoped monoliths to date: 2200 m2/g surface area; 4.3 µg/m2 AEA 

 Temperature evolution during charging of undoped 3.5” monolith (RT): 
     – ΔT = +0.3 ºC for ΔP = 35 bar 
     – T returns to original temp. with time constant of 2 min & 0.2 ºC/h 

20 
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