Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage

C. Wolverton (PI), H. Kung Northwestern Univ.

> V. Ozolins UCLA

J. Yang, M. Veenstra Ford Motor Company

> S. Hwang Caltech

S. Shore Ohio St. Univ.

NORTHWESTERN UNIVERSITY

Overview

Timeline

- Project Start Date: 9/1/08 (Funding started Feb. 09)
- Project End Date: 8/31/13
- ~80% complete

Budget

- Total Budget: \$2714K
 - DOE Share: \$2160K
 - Contractors Share: \$554K
- Funding for FY12: \$600K
- Funding for FY13: \$100K (anticipated)

Barriers

- Barriers addressed
 - P. Lack of Understanding of Hydrogen Physisorption and Chemisorption
 - A. System Weight and Volume
 - E. Charging/Discharging Rates

Partners

- Northwestern University
- UCLA
- Ford Motor Company
- Project lead: Northwestern University

Relevance – Objectives and Approach Our project: Combinations of materials to form novel multicomponent reactions

Hydrogen Storage Measurements and Auto Perspective Yang and Veenstra, Ford; Hwang (NMR), Caltech

Computational Prediction of Novel Reactions Wolverton, NU; Ozolins, UCLA

Kinetics/Catalysis/ Synthesis Experiments Kung, NU Shore, Ohio St.

UCLA

NORTHWESTERN UNIVERSITY

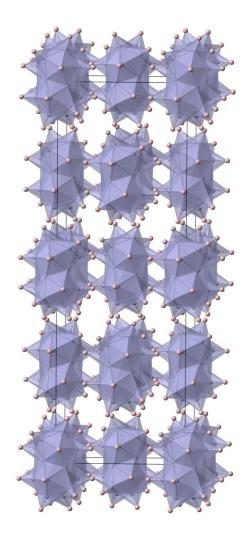
Technical Accomplishments (previous): Novel, High-Capacity Predicted Reactions

- High-throughput computational screen through all possible high capacity reactions with suitable thermodynamics in Li-Mg-B-N-H quinary.
- We focus on the reactions in bold (grayed out reactions were known previously and have been studied experimentally)

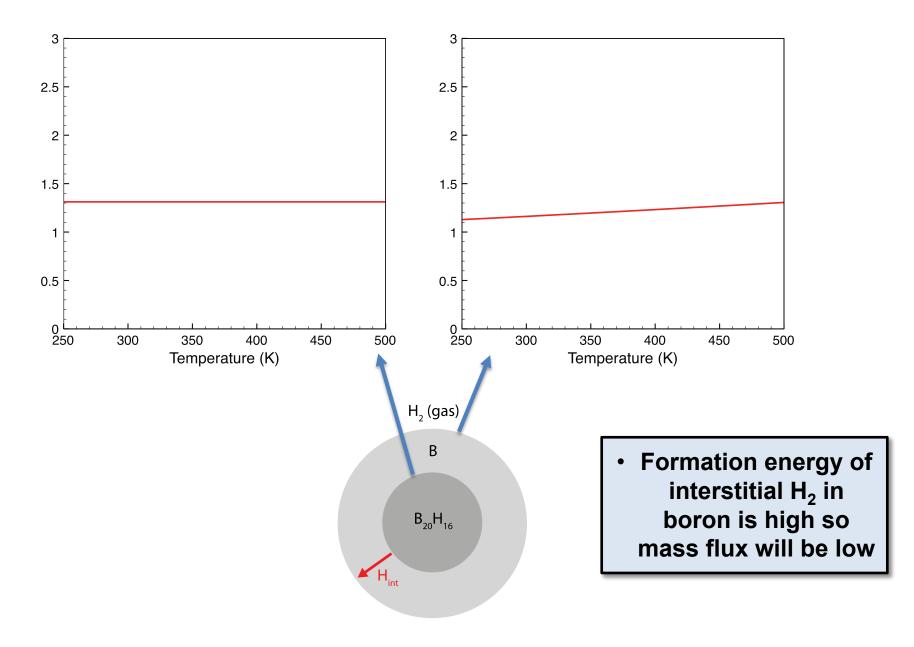
Reactions	Wt.% H ₂	Vol. H ₂ (g H ₂ /L)	ΔΗ ^{300κ} (kJ/mol H ₂)	ΔS ^{300K} (J/mol-K)
$2(NH_4)_2B_{12}H_{12} \rightarrow 4BN + B_{20}H_{16} + 12H_2$	6.81	62	17	104
$5Mg(BH_4)_2 + 2LiBH_4 \rightarrow 5MgH_2 + Li_2B_{12}H_{12} + 13H_2$	8.37	66	24	104
$6Mg(BH_4)_2 \rightarrow 5MgH_2 + MgB_{12}H_{12} + 13H_2$	8.10	65	29	100
$B_{20}H_{16} \twoheadrightarrow 20B + 8H_2$	6.95	77	33	111
$5MgH_2 + MgB_{12}H_{12} \rightarrow 6MgB_2 + 11H_2$	7.46	81	44	115

• Combination of 1st and 4th reactions above gives a very high capacity reaction:

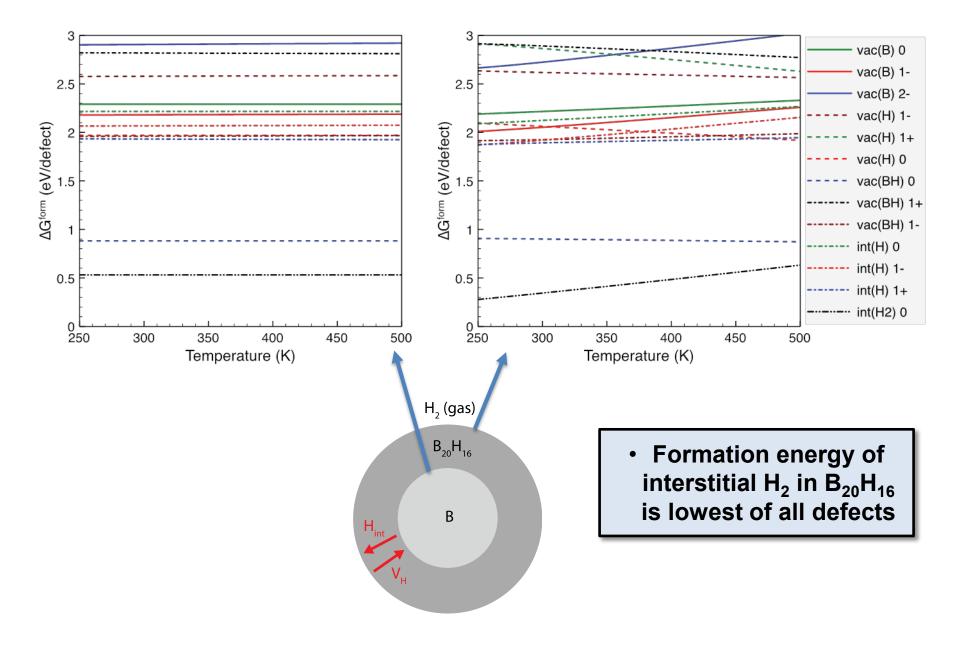
 $2(NH_4)_2B_{12}H_{12} \rightarrow 4BN + B_{20}H_{16} + 12H_2 \rightarrow 4BN + 20B + 20H_2$ $17-33 \text{ kJ/mol } H_2$ $11.3 \text{ wt.\% } H_2$ $103 \text{ g } H_2/L$


Technical Accomplishments: Thermodynamics of B₂₀H₁₆ to 20B + 8H₂

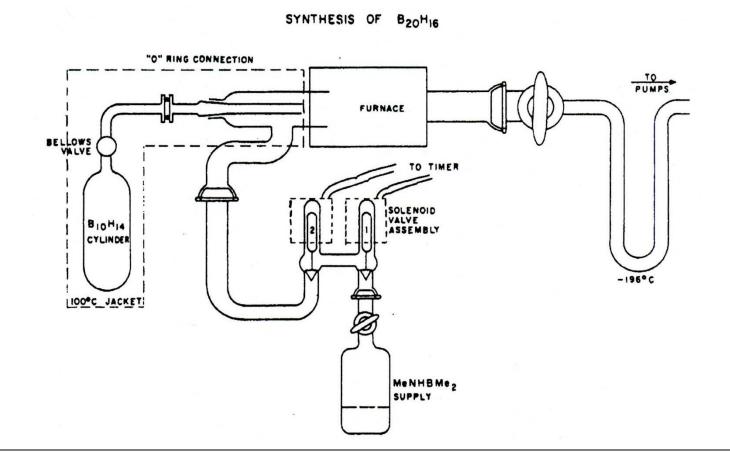
$(NH_4)_2B_{12}H_{12} \rightarrow 2BN + 0.5B_{20}H_{16} + 6H_2$		B ₂₀ H ₁₆
H ₂ content	6.76 wt. %	H ₂ content
T _{crit}	-120°C	T _{crit}
ΔH ^{0K}	12 kJ/mol H ₂	ΔH ^{ok}
ΔH ^{300K}	17 kJ/mol H ₂	ΔH ^{300K}
ΔS ^{300κ}	104 J/K·mol H ₂	ΔS ^{300κ}


$B_{20}H_{16} \rightarrow \mathbf{20B} + \mathbf{8H}_2$		
H ₂ content	6.90 wt. %	
T _{crit}	20°C	
ΔH ^{ok}	27 kJ/mol H ₂	
ΔH ^{300K}	33 kJ/mol H ₂	
ΔS ^{300K}	111 J/K∙mol H ₂	

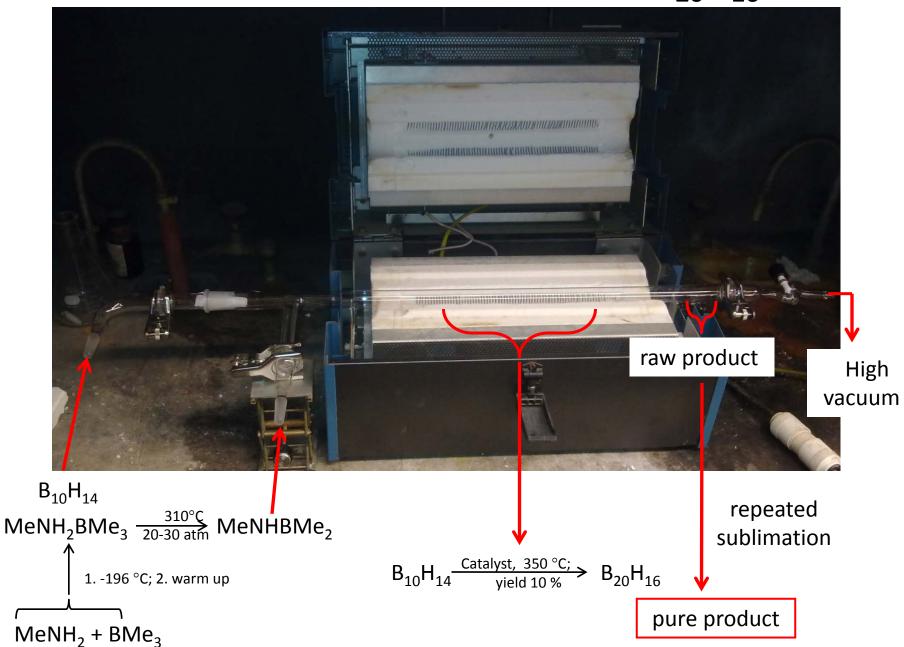
Sun, W.Q.; Wolverton, C.; Akbarzadeh, A.; Ozolins, V.; Phys. Rev. B. 83, 2011, 064112-1


- Thermodynamics of hydrogen release from B₂₀H₁₆ are ideal
- Gravimetric storage capacity near 7 wt. % H₂
- Nothing is known about kinetics of hydrogen release or uptake

Defect energetics in solid phases (B)


Defect energetics in solid phases (B₂₀H₁₆)

Interstitial H₂ flux in B₂₀H₁₆ and mass transport activation energy T (K) 500 400 333 286 250 Low activation 1×10⁻⁴ • energy for interstitial H_2 in $B_{20}H_{16}$ Mass transport is 1×10⁻⁵ likely to be fast in this system while it is rate limiting in many others 1×10⁻⁶ B₂₀H₁₆ extremely promising – first H2 2 2.5 3 3.5 4 storage reaction of known compound with 1) high capacity, Activation energy for mass transport **2) good** Rehydrogenation 6 kJ/mol thermodynamics, and 3) predicted fast Dehydrogenation 63 kJ/mol

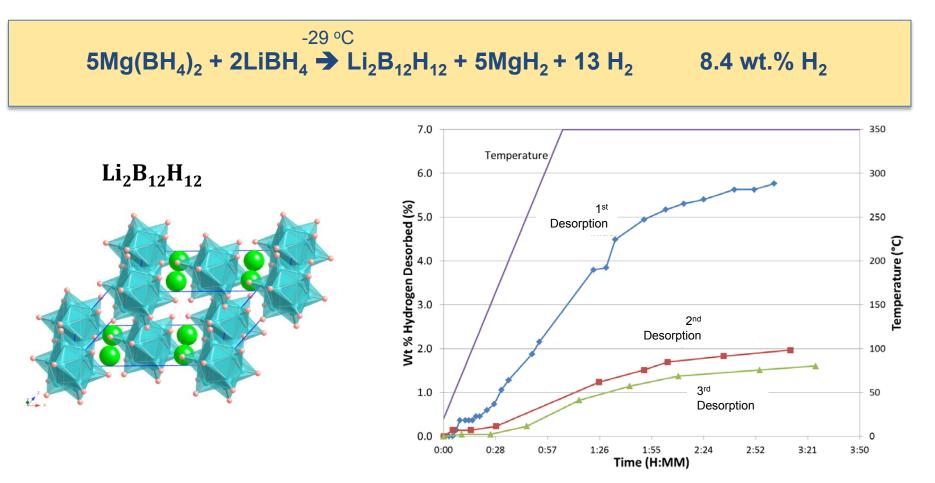

mass transport kinetics!

Technical Accomplishments: Synthesis of icosaborane-16 (B₂₀H₁₆) (new subcontract with S. Shore, OSU)

Chemistry of Boranes. XXI Icosaborane-16 : N. E. MILLER, J. A. FORSTNER, E. L. MUETTERTIES, *Inorganic Chemistry*,**3**,1690(1964)

Synthesis of icosaborane-16 (B₂₀H₁₆)

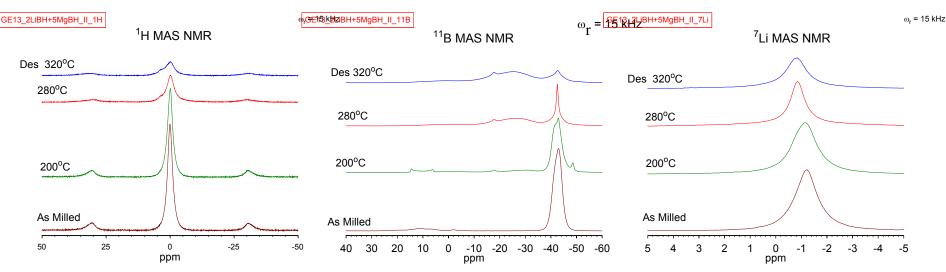
Technical Accomplishments: Novel, High-Capacity Predicted Reactions


- High-throughput computational screen through all possible high capacity reactions with suitable thermodynamics in Li-Mg-B-N-H quinary.
- We focus on the reactions in bold (grayed out reactions were known previously and have been studied experimentally)

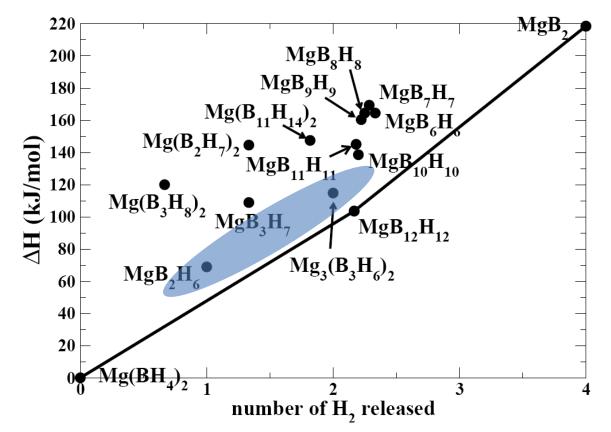
Reactions	Wt.% H ₂	Vol. H ₂ (g H ₂ /L)	ΔΗ ^{300κ} (kJ/mol H ₂)	ΔS ^{300K} (J/mol-K)
$2(NH_4)_2B_{12}H_{12} \rightarrow 4BN + B_{20}H_{16} + 12H_2$	6.81	62	17	104
$5Mg(BH_4)_2 + 2LiBH_4 \rightarrow 5MgH_2 + Li_2B_{12}H_{12} + 13H_2$	8.37	66	24	104
$6Mg(BH_4)_2 \rightarrow 5MgH_2 + MgB_{12}H_{12} + 13H_2$	8.10	65	29	100
$B_{20}H_{16} \rightarrow 20B + 8H_2$	6.95	77	33	111
$5MgH_2 + MgB_{12}H_{12} \rightarrow 6MgB_2 + 11H_2$	7.46	81	44	115

• Combination of 1st and 4th reactions above gives a very high capacity reaction:

 $2(NH_4)_2B_{12}H_{12} \rightarrow 4BN + B_{20}H_{16} + 12H_2 \rightarrow 4BN + 20B + 20H_2$ $17-33 \text{ kJ/mol } H_2$ $11.3 \text{ wt.\% } H_2$ $103 \text{ g } H_2/L$

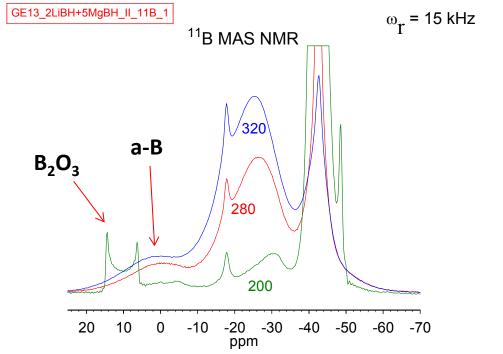

(Previous) Technical Accomplishments: Experimental Testing of Predicted Reactions

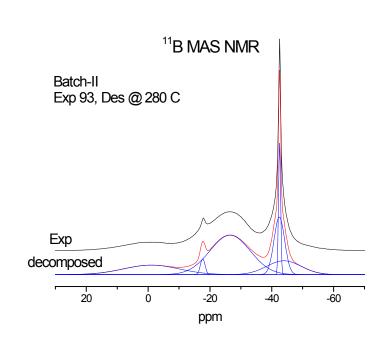
What are (non-crystalline) reaction products? Do they inhibit reversibility? Following advice of AMR reviewers, initiated NMR subcontract with S. Hwang, Caltech


Technical Accomplishments: NMR Experiments of Mixed borohydride system 2LiBH₄+5Mg(BH₄)₂

Solid state NMR characterization upon H₂ desorption reactions

- Multinuclear and high resolution (MAS) solid state NMR experiments
- Samples include the as-milled mixture of 2:5 borohydrides and solid residue after H₂ desorption.
 - ¹H and ¹¹B NMR show decrease of BH_4 (~ -41 ppm peak for both LiBH₄ and Mg(BH₄)₂)
- Desorbed borane species was mainly characterized by a broad -26 ppm peak (see following slides) after thermal heating above 280 C.
 - Note that -26 ppm peak cannot be due to Li₂B₁₂H₁₂ of which resonance is expected at -15 ppm.


What are B-containing reaction products observed in NMR? Computational screen of reaction products in Mg(BH₄)₂ (from last year)



All $[B_nH_m]$ intermediates have higher reaction energies than MgB₁₂H₁₂. Only the reactions to MgB₂H₆ and Mg₃(B₃H₆)₂ are close to the MgB₁₂H₁₂ convex hull.

Y. Zhang et al., Phys. Rev. B (2010); J. Phys. Chem. C (2012)

Borane species detected by ¹¹B NMR

- Besides the sharp -17.7 ppm and a broad peak at -1 ppm (amorphous boron), the main -26 ppm peak represents the major boron species.
- Possible species for of -26 ppm peak: diborane dianion^{2,3} - Li₂B₂H₆, MgB₂H₆
- -17.7 and -48.6 ppm: $Li_2B_5H_9$ or MgB_5H_9 like³

¹Hermanek, S. *Chemical Reviews* **1992**, *92* (2), 325-362. ²Godfroid, R. A. et al, JACS **1994**, *116* (26), 12107-12108. ³Yan, Y. et al, Mater Trans, **2011**, 52,1443.

shift (ppm)	line width(Hz)	rel Intensity
-1.00	2880	0.15
-17.66	240	0.02
-26.50	2080	0.45
-42.45	545.9664	0.17
-42.54	109.0432	0.08
-43.94	1786.133	0.13

$2LiBH_4 + 5Mg(BH_4)_2$

- At lower temperatures, a ¹¹B peak at -30.5 ppm appeared (200 °C).
- The peak could possibly be assigned to B₃H₈ formation ². However, its formation was not in significant quantity (see green line in the stack plot), and other sharp peaks at -48.6 ppm and -17.8 ppm were accompanied.
- After heating at 200 °C, the reduction in hydrogen content measured by ¹H NMR was less than 10% (see [H] plot). [H] plot for the new batch showed noticeable difference from the first batch that contains boron oxide in large fraction.
 - Yan, Y et al proposed the following reaction route for B₁₂H₁₂²⁻ formation.
 - Assigning -26 ppm peak for B₂H₆^{2-,} and -17.8 and -48.6 ppm peaks for B₅H₉²⁻, the sequence of products is inconsistent.

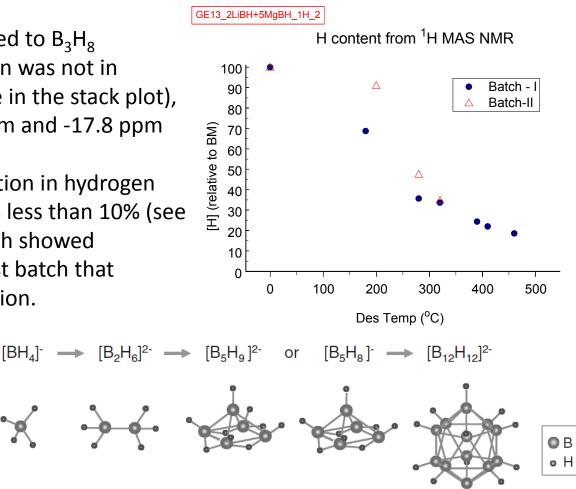
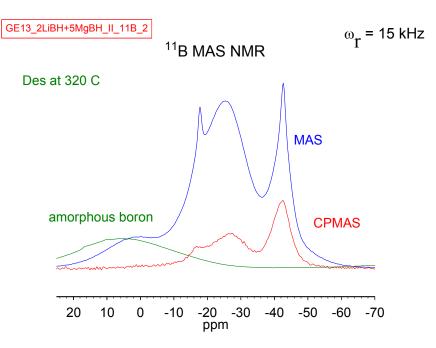
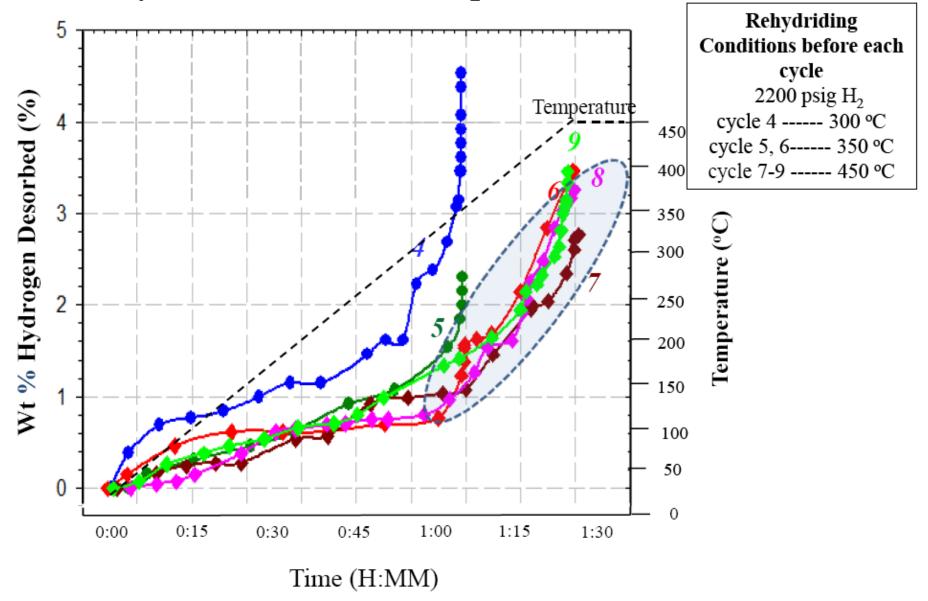



Fig. 4 Schematic illustration of formation process of $[B_{12}H_{12}]^{2-}$ from $[BH_4]^{-}$.

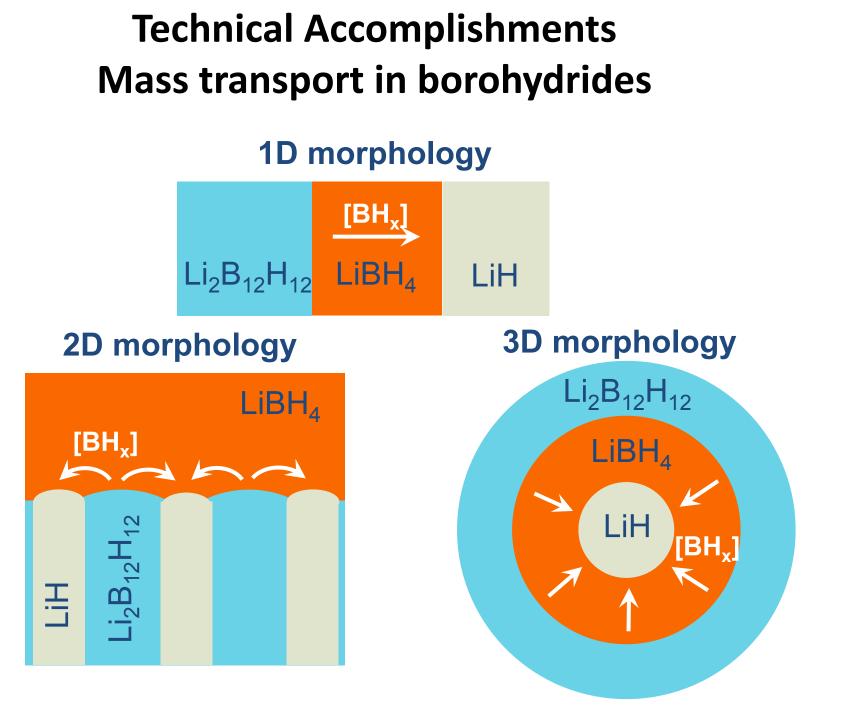
Hill, T. G.; Godfroid, R. A.; White, J. P.; Shore, S. G., *Inorganic Chemistry* **1991**, *30* (14), 2952-2954. Yan, Y. et al, Mater Trans, **2011**, 52,1443.

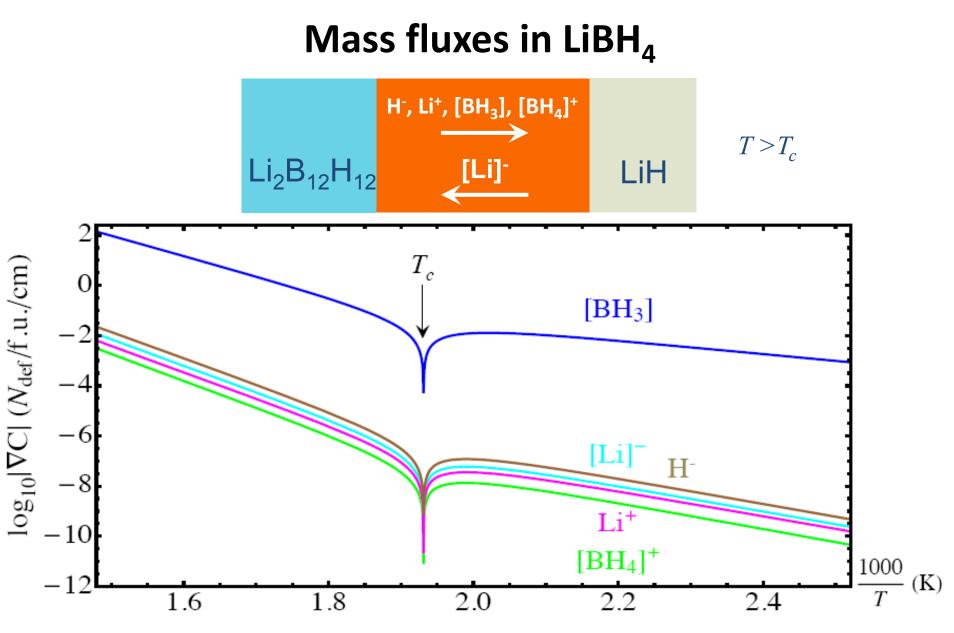
¹¹B CPMAS NMR: the formation of amorphous boron


- The peak near 0 ppm is assigned as amorphous boron at the moment. The peak appears at nearly the same position of ¹¹B spectrum of neat amorphous boron (Aldrich). ¹H-¹¹B CPMAS (crosspolarization) NMR also supports the nature of the boron species which bears no direct B-H chemical bonds.
 - Somewhat surprising to see the formation of amorphous boron – not thermodynamically expected (from calculations)
- We still have much to learn in this highlypromising reaction system.

Rehydriding Conditions Before cycles 2 and 3 5 * 2200 psig H₂ 300 °C * Wt. % Hydrogen Desorbed (%) 4 -300 temperature 3 Temperature (°C -200 2 Low temperature 2nd desorption -100 3rd desorption 0 -25 as synthesiz 0:00 0:05 0:45 0:55 0:15 0:25 0:35 1:05 Time (H:MM)

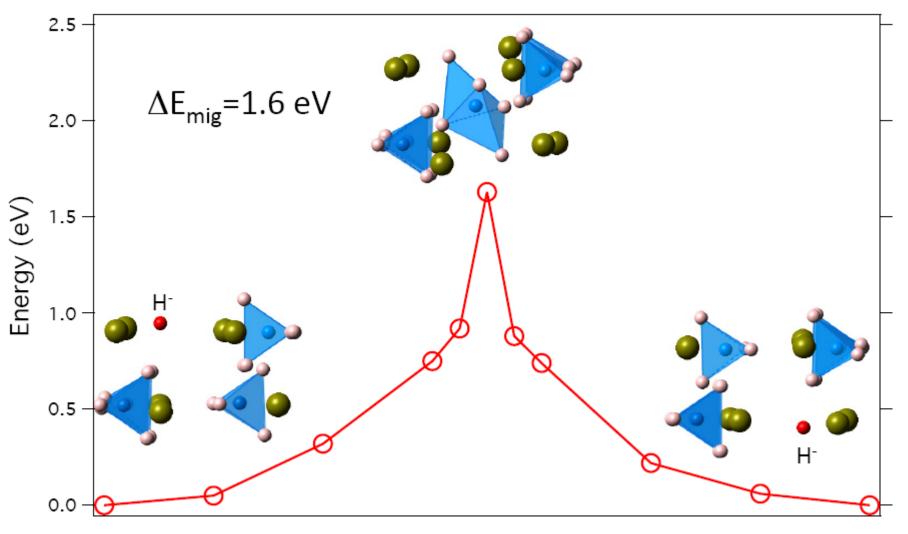
LiBH₄-carbon composite hydrogen desorption profiles


LiBH₄-carbon composite H₂ desorption cycles 4-9

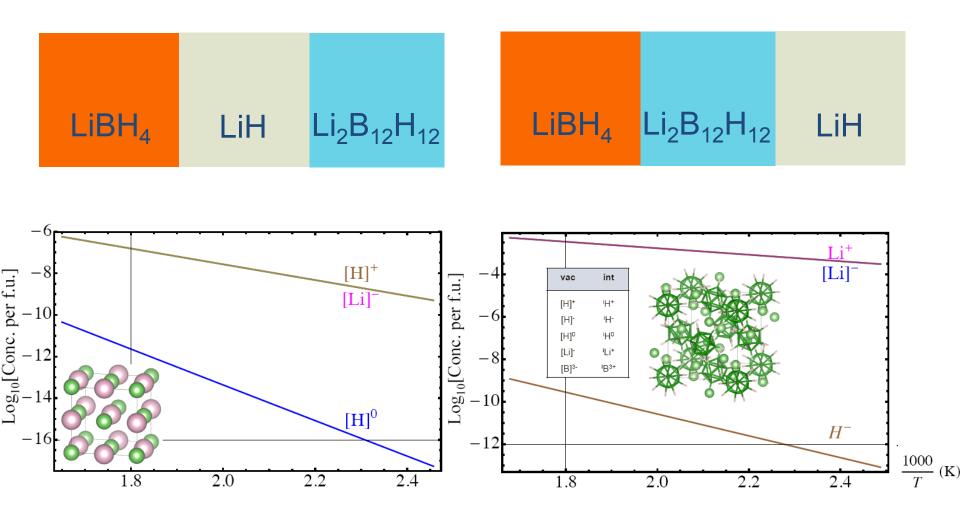


Steady and reversible performance can be attained after several dehydriding/rehydriding cycles.

Technical Accomplishments: New Theoretical Predictions


- <u>Kinetics</u> of high-capacity borohydride reactions almost always limiting factor - <u>thermodynamic</u> problems solved by appropriate combinations, i.e., 2LiBH₄+5Mg(BH₄)₂
- All computational efforts now focused on calculations of kinetic barriers (diffusion, mass transport, surface dissociation, etc.)
- Diffusion & mass transport (required for fast kinetics)
 ➢ Mass transport in LiBH₄
 ➢ Al diffusion in B₂₀H₁₆
- H₂ kinetic studies on MgB₂(0001) surface: dissociation and diffusion

The BH₃ vacancy has the largest concentration gradient. $\vec{J} = -\vec{D\nabla C}$ But how about D?


Diffusion of [BH₃] vacancies in LiBH₄

Reaction coordinate

The [BH₃] vacancy migration barrier in LiBH₄ is very high, 1.6 eV.

Native defects in LiH and Li₂B₁₂H₁₂

Concentration gradients are ~10⁵ times smaller than in LiBH₄

Collaborations

Pl's/co-Pl's

Chris Wolverton (Northwestern, lead) Harold Kung (Northwestern) Vidvuds Ozolins (UCLA) Mike Veenstra (Ford, no-cost) Jun Yang (Ford, no-cost) S. G. Shore (OSU, subcontract) S. Hwang (Caltech, subcontract)

Outside Collaborators:

D. Siegel (U. Michigan) E. Majzoub (UMSL) G. Ceder, N. Marzari (MIT) C. Brown (NIST) T. Burrell (LANL) T. Autrey (PNNL) F.-C. Chuang (Nat'l Sun Yat-Sen U) J. C. Zhao (OSU)

NORTHWESTERN UNIVERSITY

Future Plans

- Complete synthesis of B₂₀H₁₆. (subcontract); Perform desorption experiments for this compound; extend NMR experiments to determine reaction products (if noncrystalline). Perform computations of observed reaction products to confirm results and provide predictions of thermodynamics/kinetics
- If B₂₀H₁₆ does not exhibit fast kinetics, computations suggest this would not be due to mass transport, but rather other effects (e.g., nucleation). In this event, perform "product seeding" experiments on this compound to try and accelerate product nucleation.
- Extend NMR experiments to "recharged" 2LiBH₄+5Mg(BH₄)₂ samples, to determine portion(s) of the reaction that are reversible.
- Computational efforts to continue on kinetics, defects, diffusion/mass transport in promising predicted reactions (mass transport nearly complete; focusing on other barriers now – surface reactions, nucleation)
- Potentially promising avenue for "fast kinetics" borohydrides: low melting point combinations (i.e., low-lying eutectics). Direct some computational effort to finding these low-lying eutectics (AIMD and λ-integration)
- Investigate the inclusion of various additives to LiBH4-carbon composites:1) To improve the kinetics of the hydrogen cycle, 2) To ameliorate the initial degradation in cyclability. 3) To influence the decomposition pathway so that LiBH₄ will decompose to more reversible reaction products.

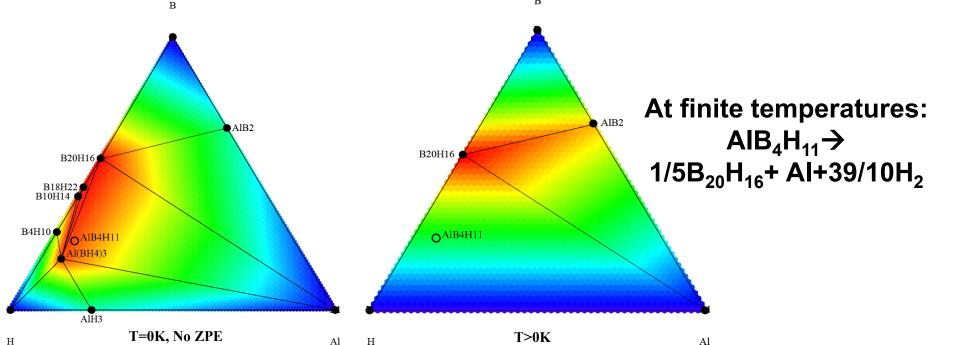
Summary – Technical Accomplishments

- Focused efforts on two main reactions, predicted to have high capacity and suitable thermodynamics for H2 storage applications, $2\text{LiBH}_4 + 5\text{Mg}(\text{BH}_4)_2$ and $\text{B}_{20}\text{H}_{16}$.
- B₂₀H₁₆ extremely promising first known H2 storage reaction with high capacity, good thermodynamics, and computational predicted fast mass transport kinetics!
- Theoretically predicted that mass transport in B₂₀H₁₆ is fast. Subcontract at OSU focused on synthesis of B₂₀H₁₆ compound (future plans will focus on desorption, NMR, kinetics, and reaction products full characterization of this material)
- H₂ desorption and decomposition pathways have been studied in [2LiBH₄ + 5Mg(BH₄)₂] using NMR; reaction products consistent with theoretically predicted B₂H₆ anion; still much to explore in this system in terms of reversibility of reaction products (future plans).
- Low temperature hydrogen desorption observed for LiBH₄ -carbon composite. Stable cycling can be attained after a few cycles
- Using the predictive models of kinetics of mass transport, the Al mass transport in $B_{20}H_{16}$ is quite high (important for H_2 release from AlB_4H_{11}), but the mass transport in $LiBH_4$ is very low (much lower than that in $NaAlH_4$); potential avenue for borohydrides low-lying eutectics (see future plans).
- Computational survey of dopants that lower surface dissociation or diffusion for MgB₂ rehydrogenation

Publications (2012-2013)

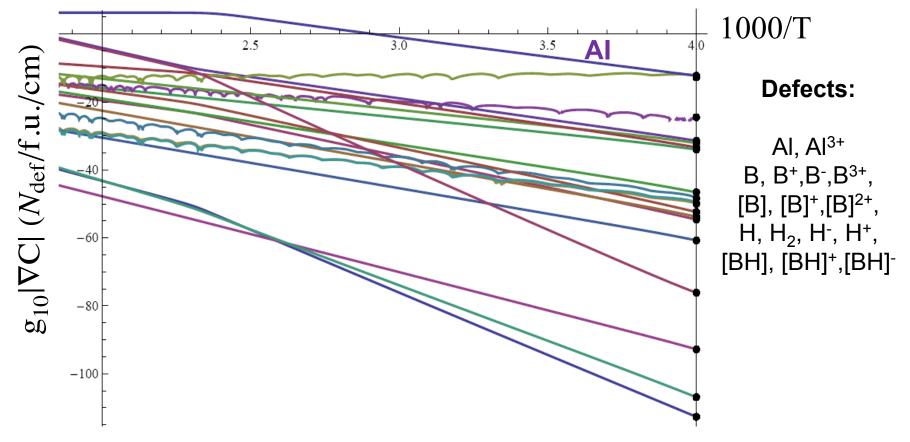
- Transition Metal-Decorated Activated carbon Catalysts for Dehydrogenation of NaAlH₄, Sean S.-Y. Lin, Jun Yang, and Harold H. Kung, Int. J. Hydrogen Energy **37**, 2737 (2012)
- Theoretical prediction of metastable intermediates in the decomposition of Mg(BH₄)₂, Yongsheng Zhang, Eric Majzoub, Vidvuds Ozolins and C. Wolverton , J. Phys. Chem. C **116**, 10522 (2012)
- Crystal structures, phase stabilities, and hydrogen storage properties of metal amidoboranes, Yongsheng Zhang and C. Wolverton , J. Phys. Chem. C **116**, 14224 (2012)
- *First-principles insight into the degeneracy of ground state LiBH*₄ *structures,* Yongsheng Zhang, Yongli Wang, Kyle Michel and C. Wolverton, Phys. Rev. B **86**, 094111 (2012)
- Structure determination of an amorphous compound AlB₄H₁₁, X.Chen, Y. Zhang, Y. Wang, W. Zhou, D. A. Knight, T. B. Yisgedu, Z. Huang, H. K. Lingam, B. Billet, T. J. Udovic, G. M. Brown, S. G. Shore, C. Wolverton and J.-C. Zhao, Chem. Sci. **3**, 3183 (2012)
- *First-principles studies at intermediate products in the decomposition of metal amidoboranes,* Yongsheng Zhang, Tom Autrey and C. Wolverton , J. Phys. Chem. C **116**, 26728 (2012).
- *Hydrogen storage properties of complex-metal hydride-carbon materials,* Sean S.-Y. Lin , Jun Yang, Harold H. Kung and Mayfair C. Kung, Topics in Catalysis (in press, 2013).
- The kinetics of mass transport in B20H16, Kyle Michel, Yongsheng Zhang and C. Wolverton, (submitted, 2013)
- Crystal Structure, Phase Stability, and Decomposition of the Quaternary Mg-B-N-H Hydrogen Storage System, Y. Zhang, D. Farrell, J. Yang, A. Sudik, and C. Wolverton (submitted, 2013).

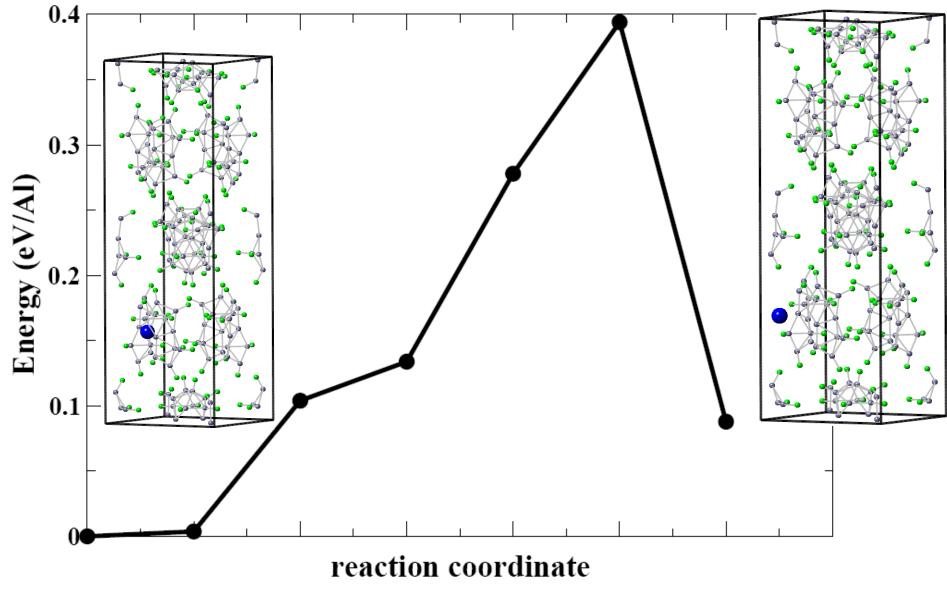
Publications (previous years)


- Theoretical prediction of different decomposition paths for Ca(BH4)2 and Mg(BH4)2, Yongsheng Zhang, Eric Majzoub, Vidvuds Ozolins and C. Wolverton, Phys. Rev. B 82, 174107 (2010)
- First-principles prediction of phase stability and crystal structures in Li-Zn and Na-Zn mixed-metal borohydrides, Dilpuneet S. Aidhy and C. Wolverton, Phys. Rev. B 83, 144111 (2011)
- Prediction of a Ca(BH4)(NH2) quaternary hydrogen storage compound from first-principles calculations, Dilpuneet S. Aidhy, Yongsheng Zhang and C. Wolverton, Phys. Rev. B 84, 134103 (2011)
- *First-principles prediction of high-capacity, thermodynamically reversible hydrogen storage reactions based on (NH4)2B12H12,* W. H. Sun, C. Wolverton, A. R. Akbarzadeh and V. Ozolins , Phys. Rev. B 83, 064112 (2011).

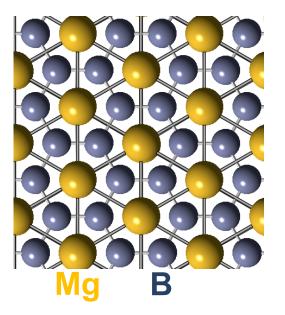
Backup Slides (Extra information/results not presented due to time constraints)

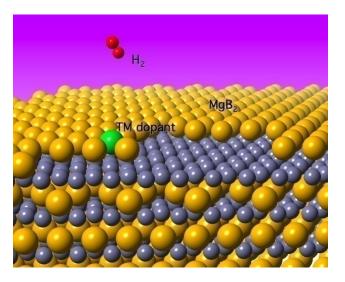
Technical Accomplishments mass transport in AlB₄H₁₁


- AIB₄H₁₁ structure X. Chen et al., Chem. Sci. 3, 3183 (2012)
 - AIB_4H_{11} attractive properties
 - > High hydrogen content (13.5% H_2)
 - Moderate stability
 - Decomposition temperature ~125 °C
 - Endothermic dehydrogenation
 - Rehydrogenation at moderate conditions

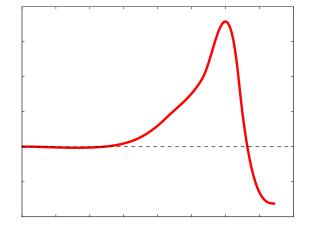

Mass fluxes in B₂₀H₁₆

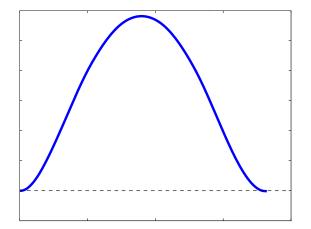
The AI interstitial has the largest concentration gradient.

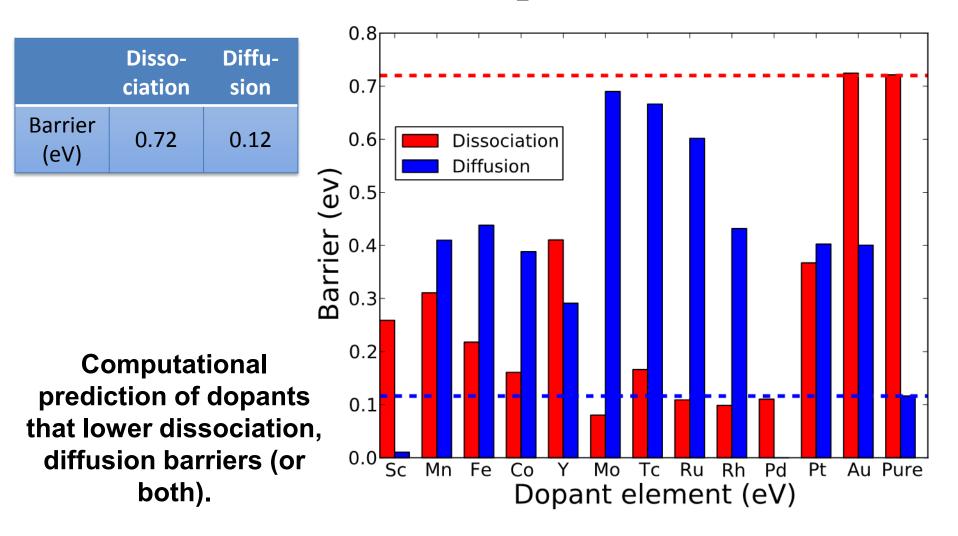

Al migration barrier in B₂₀H₁₆: preliminary results



The AI migration barrier in $B_{20}H_{16}$ is low, ~0.4 eV.


Identify the kinetic barriers for re-hydrogenation of MgB₂


 What are the ratelimiting steps for MgB₂ ? (mass transportation, nucleation, dissociation, diffusion or etc?)



We investigated the H₂ dissociation and H diffusion on the Mgterminated MgB₂ (0001) surface

Identify the kinetic barriers for re-hydrogenation of MgB₂

