SRNL Technical Work Scope for the Hydrogen Storage Engineering Center of Excellence

Design and Testing of Adsorbent Storage Systems

David Tamburello

Assistant System Architect, Lead System Designer, and SRNL Tech Team Lead

Theodore Motyka

Assistant Director and SRNL Project Lead

Richard Chahine Director Hydrogen Research Institute, UQTR Bruce Hardy SRNL Transport Phenomena Tech Area Lead

Matthew Kesterson SRNL Transport Phenomena Claudio Corgnale SRNL Transport Phenomena

Savannah River National Laboratory May 14, 2013

Project ID#ST044

This presentation does not contain any proprietary, confidential or otherwise restricted information

Overview

Timeline

- Start: February 1, 2009
- End: June 30, 2014
- 75% Complete (as of 3/1/13)

Barriers

- System Weight and Volume
- H₂ Flow Rate
- Energy Efficiency

Budget

- FY12 Funding: \$1,030,000*
- FY13 Funding: \$1,030,000*
- * Includes \$240,000/\$240,000 for the University of Quebec Trois Rivieres (UQTR) as a subrecipient for FY12/FY13

Partners

Relevance – Overall Project Objectives

Phase 1: 2009-2011

- Compile all relevant metal hydride materials data for candidate storage media and define future data requirements. Complete
- Develop engineering and design models to further the understanding of on-board storage transport phenomena requirements. Complete
- Apply system architecture approach to delete specific metal hydride systems not capable of meeting DOE storage targets. Complete

Phase 2: 2011-2013

- Develop and apply adsorbent acceptability envelope. Complete
- Conduct component adsorbent experiments. Complete
- Design components and experimental test fixtures to evaluate the innovative storage devices and subsystem design concepts, validate model predictions, and improve both component design and predictive capability. Well Established and in Progress

Phase 3: 2013-2014

- Design, fabricate, test, and decommission the subscale prototype systems for adsorbent storage materials.
- Validate the detailed and system model predictions against the subscale prototype system to improve model accuracy and predictive capabilities.

Approach - HSECoE Organization

Approach – FY2012 / FY2013 Milestones

SMART Milestone for SRNL/UQTR:

- Report on the ability to develop a compacted MOF-5 adsorbent media bed having a total H_2 density of 11% g_{H2}/g_{MOF} and 33 g_{H2}/L_{MOF} at P = 60 5 bar and T = 80 160 K. Alternative compaction methods will be pursued with Ford to identify higher volumetric density morphologies meeting the metrics.
- Report on the ability to develop and demonstrate an internal flow through (FT) heat exchanger (HX) system based on compacted media capable of allowing less than 3 minute scaled refueling time and H₂ release rate of 0.02 g_{H2}/s/kW with a mass less than 6.5 kg and a volume less than 6 L. Metric Met.
- Report on the ability to identify a system design having a mass less than 137 kg and a volume less than 279 L meeting all of the HSECoE drive cycles. – Metric Exceeded.
- Report on the ability to develop and demonstrate a non-MATI isolated HX-ing loop capable of allowing less than 3 minute refueling time and a H₂ release rate of 0.02 g_{H2}/s/kW with a mass less than 6.5 kg and a volume less than 6 L. – Metric suspended as not viable.

Transport Phenomena Technology Milestones for SRNL/UQTR:

- 1. Refine the detailed models for scaled-up and alternative H_2 storage applications. In progress.
- 2. Continue the FT cooling experiments, investigating MOF-5 powder, pellet, and compacted forms. Employ various HX concepts as applicable. – In progress.
- 3. Optimize the adsorbent system with respect to pressure work, enthalpy of H₂ discharge flow, dormancy conditions, and thermal interaction with the container well. Completed.
- 4. Develop and apply an Adsorbent Acceptability Envelope (AAE), having a draft publication for refereed journal article by 3/1/2013. AAE developed and applied. Draft journal article written.
- 5. Select an adsorbent, and form thereof, for use in the Phase 3 prototype. In progress.
- 6. Begin the prototype design and experimental test matrix development for Phase 3. In progress.

Approach – Prototype Selection, Design, and Testing Process

- Lumped capacitance models of the storage system (adsorbent material, vessels, BOP, and other components) to predict the full system performance.
- Continual feedback with the detailed models and system models
- Used to validate, augment, and improve predictive ability of the models

Approach – Adsorbent Acceptability Envelope

Accomplishments and Progress – AAE Analysis: Sensitivity to n_{max} – "Idealized" Material #1

Hydrogen discharging:

- Discharge temperature ~56 K higher than for MOF-5.
- Reduced the internal tank volume by more than 50% of MOF-5.

Hydrogen charging:

- Ideal material n_{max}: ~400 mol_{H2}/kg_{ads} to meet the 2017 DOE targets.
 - \circ Grav. cap. target met: n_{max} ~1.8x MOF-5.
 - $_{\odot}$ Vol. cap. target met: n_{max} ~4.6x MOF-5.
- Ideal material m_{inlet} is 42% higher than the corresponding MOF-5 value.

<u>Need reduction of additional system</u> and BOP weight and volume

Accomplishments and Progress – AAE Analysis: Sensitivity to ρ_{Ads} – "Idealized" Material #2

Hydrogen discharging:

- Discharge temperature ~25 K higher than for MOF-5.
- Reduced the internal tank volume by more than 50% of MOF-5.

Hydrogen charging:

- Ideal material ρ_{max}: ~690 kg/m³.
 OBoth 2017 DOE Gravimetric & Volumetric capacity targets met at 4.6x MOF-5.
- 4.6x reduction of MOF-5 (V_v - V_a).
- Ideal material m_{inlet} about 55% higher than the corresponding MOF-5 value.

HSECOE

<u>Need reduction of additional system</u> and BOP weight and volume

Accomplishments and Progress – Example "Idealized" Adsorbent Materials Determined from the AAE Analysis.

- Properties not listed above were not considered (yet) and are assumed to be consistent with existing literature values for powder MOF-5, including:
 - Thermal conductivity, permeability, specific heat, and void fraction.

Pressure [bar]

Accomplishments and Progress – Flow-Through Cooling Adiabatic Wall & LN2 Assisted Cooling

Accomplishments and Progress – MOF-5 Powder with No Internal Heat Exchanger: Data vs. Model

Accomplishments and Progress – MOF-5 Pellets in a HexCell Internal Heat Exchanger: Experimental Data

Material weights:

- Aluminum honeycomb structure: 39.147 g.
- MOF-5 pellets: 103.271 g.
- MaxSorb activated carbon: 48.674 g.

Accomplishments and Progress – Pellet Flow-Over Cooling vs Powder Flow-Through Cooling

Approach – From Over $\frac{1}{2}$ Billion Combinations \rightarrow Down to **Four Phase 2 Systems**

Over 1/2 Billion Possible System Combinations:

- Internal heat exchangers (all options) (x45)
- Tank types (x6)
- L-to-D ratios (x3)
- LN_2 inner wall chiller (x2)
- Hemispherical vs. oblate endcaps (x2)
- Pressure vessel only vs. full design (x2)
- Material types (with volume-% changes) (x87)
- Media packing density (x10)
- Full tank pressure (x12)
- Full tank temperature (x7)
- Empty tank temperature (x4)

Perform a parametric study

Option #1	Option #2	Option #3		Option N
1	1	1		1
2	1	1		1
÷	÷	:	÷	:
N_1	1	1		1
1	2	1		1
2	2	1		1
÷	÷	÷	÷	:
N ₁	N ₂	N ₃		N _N

LOTE

Eliminate unrealizable system options and combinations of options

62 Million Reasonable Systems Combinations:

- Internal heat exchangers (all options) (x31)
- Tank types (x2)
- L-to-D ratios (x3)
- LN_2 inner wall chiller (x2)
- Hemispherical vs. oblate endcaps (x2)
- Pressure vessel only vs. full design (x1)
- Material types (with volume-% changes) (x29)
- Media packing density (x5)
- Full tank pressure (x12)
- Full tank temperature (x6)
- Empty tank temperature (x8)

Filter the Results

Final 4 Systems:

- Three flow-through cooling with resistance HX options:
 - 1. HexCell with powder MOF-5
 - 2. HexCell with 0.32 g/cc compacted MOF-5 pellets
 - 3. Helical coil with powder MOF-5
- One isolated-LN₂ cooling with isolated-H₂ heating option:
 - 4. MATI with 0.32 g/cc compacted MOF-5 pucks

Approach – System Designs: Flow-Through Cooling with a **Resistance-based Internal Heat Exchanger**

0.13 g/cc powder MOF-5, with 100% packing density

UQTA

NOTE: System design for an isolated heating/cooling fluid internal heat exchanger (MATI) is not shown.

HSECOE

Accomplishments and Progress – System Comparisons: 4.4:1 Type 1 Al Tank, T_{full} = 80 K, P_{full} = 100 bar.

Accomplishments and Progress – System Spider Chart Comparisons: Phase 1 Baseline vs. HexCell vs. MATI

End of Phase 2 HexCell (projected) vs. 2017 Targets: MOF-5 Powder; 4.4:1 Type 1 Al Tank w/ LN₂; HexCell HX; 100 bar, 80 K (full)

HexCell Phase 1		Gravimetric Capacity (g _{H2} /g _{sys})	Estimate System Cost (\$/kWh _{net})	Volumetric Capacity (g _{H2} /L _{sys})	Loss of Usable H ₂ (g/hr/kg _{H2})	
	End of Phase 1 Baseline	0.0312	\$18.30	0.0194	0.445	
	HexCell with Powder MOF-5	0.0352	\$12.73	0.0175	0.267	
	MATI with Comp. 0.32 g/cc MOF-5	0.0341	\$15.45	0.0207	0.267	

End of Phase 2 MATI (projected) vs. 2017 Targets: 0.32 g/cc MOF-5 Pucks; 4.4:1 Type 1 Al Tank w/ LN₂; MATI HX; 100 bar, 80 K (full)

Future Work – Possible Changes/Improvements: Waterfall Charts for an 80 K, 100 bar HexCell Storage System

Future Work – Phase III Prototype Design

- Finalize selection of the cooling and heating methods for the Phase III Prototype.
- Subscale component/concept testing.
 - Continue experiments at UQTR, GM, and OSU.
 - Component/concept validation.
 - Preliminary testing with MOF-5.
 - \odot Validate detailed models with experimental results.
 - Perform specifically designed experiments to aid in understanding the physical behavior.
 - Improve model accuracy for full system scale-up and/or future material predictions.
 - Subscale testing of internal heat exchanger components.
 - Identify design modifications as necessary.

• Full system scale-up and future system predictions

- Finalize the system-level Balance of Plant (BOP).
 - Component selection and selected mass, volume, cost, etc.
 - Identify possible automotive-scale component combinations/reductions.
- $\,\circ\,$ System-level modifications based on subscale and prototype results.
- Additional detailed model development (as required).
- Additional system model development (as required).

All Planned Activities Will Automatically Support the Phase III SMART Milestones.

Project Summary

Relevance

As both the overall lead and a major technical contributor to the HSECoE project, SRNL is using its extensive expertise in thermodynamics, hydrogen materials compatibility, transport phenomena modeling & analysis, and hydrogen storage system & component design & fabrication to evaluate solid-state hydrogen storage systems for vehicle application that meet or exceed DOE's 2017 goals.

SRNL, through a subcontract grant, is also utilizing the expertise of the UQTR, which has been internationally recognized for its work in hydrogen adsorbent material and system development and testing.

Approach

- Provided analyses for the Phase III Prototype Design and Go/No-Go decisions.
- Developed, validated, and applied detailed models of several adsorbent media options.
- Investigated the viability of the flow-through cooling concept for adsorbent systems, from both modeling and experimental perspectives.
- Developed and applied full system models that determined hydrogen storage requirements for combinations of media, vessel, and components.

Technical Accomplishments and Progress (as of 03/2013)

- Developed an Adsorbent Acceptability Envelope (AAE) that identifies coupled material properties and system dimension that affect gravimetric capacity, volumetric capacity, charging rates, and discharging rates.
- Detailed model results and experimental results (through UQTR, the subrecipient of SRNL) suggest:
 - $\circ~$ Charging is best achieved using LN_2 assisted flow through cooling.
 - o While pelletized MOF-5 offers some improved volumetric capacity, the time for charging is significantly increased.
 - Mass and enthalpy of exhaust H₂ increases as well.
 - o The HexCell insert with an electrical resistance heater can be used to discharge hydrogen, while still permitting effective flow-through cooling.
- Developed fully customizable adsorbent system models to compare possible full-scale systems.
 - \circ Parametric study: reduced over $\frac{1}{2}$ Billion systems down to four leading adsorbent systems designs.
 - o Projected future system designs assuming possible system, component, and/or material improvements.
- Developed external, publically accessible, web site and disseminated the metal hydride acceptability envelope and heat transfer models.

Collaborations

HSECoE partners, Materials Centers, SSAWG, IPHE, IEA ; Griffith University, Brisbane, Australia

Proposed Future Work – Phase III Prototype Development

- Finalize selection of the cooling and heating methods for the Phase III Prototype.
- Subscale component / concept testing:
 - o Continue experiments at UQTR, GM, and OSU for further component/concept validation with MOF-5.
 - Validate detailed models with experimental results, with specifically designed experiments to aid in understanding the physical behavior and improve model accuracy.
 - $\circ~$ Subscale testing of internal heat exchanger components.
- · Full system scale-up and future system predictions:
 - Finalize the system-level Balance of Plant component selection (mass, volume, cost, etc.), identifying possible automotive-scale component combinations/reductions.
 - $\circ~$ System-level modifications based on subscale and prototype results.

Technical Back-up Slides

Accomplishments and Progress – Flow-Through Cooling Validation Experiments

Teflon is a registered trademark of DuPont Swagelok is a registered trademark of Swagelok Company

HSECoE

Approach – MOF-5 Powder With HexCell Lattice: Assembly of Apparatus with LN₂ coil

Al HexCell weight = 39.0 g Al HexCell volume = 15 ml MOF-5 Powder: 88.6 g (ρ = 160 kg/m³)

Planned experiments:

- 1. Powder w/ hex cell
- 2. Powder w/ hex cell w/ LN2 coil

LOTE

Accomplishments and Progress – Model Results for HexCell HX with Resistive Heating

Accomplishments and Progress – Powder MOF-5 HexCell System: Tank Components Breakdown System Mass [kg] h = 2/3*R Vacuum shell System Volume [L] Multilayer insulation in evicuate

	LN ₂ vessel wall ch Pressure vessel	hilling channel 160.00 140.00 120.00 100.00 80.00 60.00 40.00 20.00 0.00	HexCell Powder	350.00 300.00 250.00 200.00 150.00 100.00 50.00 0.00 HexCell	System Cost [\$2,500.00 \$2,000.00 \$1,500.00 \$1,000.00 \$500.00	BOP Tank Int_HX Adsorbent Hydrogen		$L_{cyl} = 1.659$ $R_1 = 0.1817$ $R_2 - R_1 = 0.0102$ $R_4 - R_2 = 0.0068$ $R_5 - R_4 = 0.0254$ $R_6 - R_5 = 0.0020$ $D_{tank} = 0.452$	m 'm ?m ?m }m }m)m m	L _{cyi}
Component	Mass	Vol**	Cost*	Powder	\$0.00 HexCell Powder			$L_{tank} = 1.990$		<u>V</u>
Pressure Vessel	62.45 kg	23.45 L	\$397.47	HexCell-Pwdr: T	Fank Comp Mass [kg] E	Breakdown				-14
LN ₂ Channel	19.24 kg	16.42 L	\$122.45	8% 14%	6					
Insulation	8.01 kg	67.84 L	\$151.51				K	R ₁	<u>Tank Lay</u>	er Thicknesse
Outer Shell	15.35 kg	5.77 L	\$97.70	18%	59%		$\langle \rangle$	R ₄ R ₂	CF layer	'er/liner = R1 (Type 3) = R2 chiller = R3 to
Boss, Plug, & Support Rings	1.28 kg	0.00 L	\$70.55		Tank Comp Vol II 1 Br	ookdown		R ₆ R ₃	MLSVI In Outer sh	sulation = R4 ell = R5 to R6
Tank-only Totals	106.33 kg	303.36 L	\$839.67	5%	,0%			··/_/-*		
* Tank costs include manufacturing cost (34% multiplier on Al mass).				21%	HexCo	ell-Pw	vdr: Tank Comp Cost	[Ş] Brea	Ikdown Pres_Vesse	

**Tank volume total is the tank outer volume (outside of the shell).

es: to R2 to R3 R4 to R5

