

Neutron Characterization in support of the DOE Hydrogen Storage Sub-Program

Terrence J. Udovic Craig M. Brown Dan A. Neumann

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

May 15, 2013

ST067

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start FY10
- Project end determined annually by DOE

Budget

- FY12 \$200K
- FY13 \$200K

NIST continues to provide access to neutron facilities and FTEs for the DOE Hydrogen Storage Projects.

NIST Associates

Nina VerdalHui WuJohn J. RushWei ZhouMatt Hudson

Barriers addressed

- A. System Weight and Volume
- P. Lack of Understanding of Hydrogen Physisorption and Chemisorption

Partners

Caltech, Delaware, GM, HRL, Maryland, Michigan, Missouri-St. Louis, Molecular Foundry, NREL, Ohio State, Penn, Penn State, RCB Hydrides, Sandia, UC Berkeley, Washington U.-St. Louis

- **Overall:** Support the DOE-EERE-funded hydrogen-storage projects by providing timely, comprehensive characterization_of materials and storage systems using state-of-the-art neutron methods.
- Direct partner synthesis efforts based on the understanding gained through the use of these methods.
- Demonstrate the fundamental characteristics of useful hydrogenstorage materials.

Neutron methods

- determine elemental compositions of materials (prompt- γ activation analysis and neutron reflectometry of H stoichiometries and profiles)
- determine location of H and crystal structures of materials (neutron diffraction superior to XRD for "seeing" light H and D)
- determine bonding of absorbed H (unlike IR and Raman, neutron vibrational spectroscopy "sees" all H vibrations for straightforward comparison with first-principles calculations)
- elucidate H diffusion mechanisms (faster dynamics timescale of neutron quasielastic scattering complements NMR; transport mechanisms gleaned from momentum transfer dependence)

Neutron methods, synthesis expertise, and DFT computations were used to further the goals of the DOE Hydrogen-Storage Program.

Synthesis and Characterization of Novel Compounds NIST

DOE Hydrogen Program

Collaboration with Maryland, GM

Motivation: synthesizing new compounds potentially promising for hydrogen storage

DFT phonon simulations are in good agreement with neutron vibrational spectra for the recently synthesized lithium hydrazinoborane (LiN₂H₃BH₃).

 $LiN_2H_3BH_3$ exhibits dramatically improved properties over the pristine hydrazine borane ($N_2H_4BH_3$) with nearly complete dehydrogenation in a mild temperature range (50-225 C) and high-purity H_2 release.

Agreement between neutron vibrational spectroscopy and DFT corroborates structure determined by diffraction methods.

H. Wu et al., Energy Environ. Sci. 5, 7531 (2012).

Subtle Borohydride Phase Transitions

Collaboration with Maryland, Michigan, Delft University

Motivation: characterizing the bonding in borohydride materials

Neutron vibrational spectra of BH₄torsional bands in MBH₄ across the order-disorder phase transition.

ordered

Comparison of observed and simulated $BH_4^$ torsional bands in KBH_4 for the ordered (blue) and disordered (red) phases.

Neutron diffraction and spectroscopy indicate that the anion-ordered phases in $RbBH_4$ and $CsBH_4$ do exist but are short-ranged. 7

disordered

MBH₄

(M = Na, K, Rb, Cs)

N. Verdal et al., J. Phys. Chem. C 117, 876(2013).

The Rotational Dynamics of BH₄- Anions

Collaboration with Maryland, Michigan, Delft University

Motivation: understanding BH_4^- rotational dynamics in MBH_4

Neutron-Scattering Fixed-Window Scans for MBH_4 Compounds

As the cation size increases:

- the rotational jump rate increases at a given temperature.
- the temperature corresponding to the onset of rapid rotations decreases.

Fixed-window scans allow for a relative comparison of BH₄- anion rotational mobilities.

The Dynamics of Modified LiBH₄ Phases

Collaboration with Maryland, Michigan, HRL, IMP Ekaterinburg

Motivation: understanding BH₄⁻ rotational dynamics in modified LiBH₄

Neutron-Scattering Fixed-Window Scans for Bulk and Destabilized LiBH₄

Compared to the bulk, the average BH₄- rotational jump rate in nanoconfinement increases with decreasing pore size.

BH4⁻ rotates extremely rapidly in the LiI-stabilized hexagonal phase

Fixed-window scans suggest that smaller pores fill first in partially loaded samples.

T. J. Udovic et al., J. Alloys Compds. (in press 2013); http://dx.doi.org/10.1016/j.jallcom.2013.02.025

LiBH4 in Ordered Nanoporous Carbon (NPC) NIST

DOE Hydrogen Program

Collaboration with Maryland, Missouri-St. Louis, Washington U.-St. Louis, Sandia, Cal Tech

Motivation: characterizing BH_{4} - dynamics in nanoconfinement

On average, BH₄⁻ anions go from uniaxial 3-fold jump rotations at 330 K to more multi-axis diffuse rotations at 400 K, with no obvious phase transition.

LiBH4 in Ordered Nanoporous Carbon (NPC) NST

DOE Hydrogen Program

Collaboration with Maryland, Missouri-St. Louis, Washington U.-St. Louis, Sandia, Cal Tech

Motivation: characterizing BH_{4} - dynamics in nanoconfinement

The fraction of interface BH_{4} anions increases somewhat with temperature.

Collaboration with Maryland, IMP-Ekaterinburg

Motivation: understanding the effects of alloying LiBH $_4$ with LiI

 BH_4^- anions reorient predominantly around the *c*-directed B-H bond at 125 K. By 12 200 K, jump exchanges between the axial H and other three trigonal H's also occur.

Collaboration with Washington U.-St. L., Missouri-St. L., RCB Hydrides, Radboud University

Motivation: understanding the nature of mobile AIH_x species observed in NaAIH₄

Neutron Vibrational Spectra of pretreated NaAlH₄ vs. bulk NaAlH₄ and Na₃AlH₆

Recently, a new mobile AlH_x species (termed S105) was discovered in the hydrogen chemistry of NaAlH₄ using *in situ* NMR. [J. Phys. Chem. Lett. 1, 2412 2010)]

Besides NaAlH₄ and trace amounts of Na₃AlH₆, NV spectra indicate no unusual hydrogenous species in S105-bearing samples.

NV spectra are consistent with NMR results suggesting that S105 involves mobile 13 AlH₄⁻ tetrahedral anions whose formation is promoted by hydroxide impurities.

Collaborations

Partners (Type of Institution): What we provide to them

CalTech (Univ.): neutron measurements of various porous materials.

Delaware (Univ.): neutron measurements of various zeolites.

GM (Industry): neutron characterization of complex hydrides.

HRL (Industry) neutron measurements of $BH_{4^{-}}$ dynamics in nanoconfined metal borohydrides.

Maryland (Univ.): neutron and x-ray measurements of alanates, borohydrides, and related materials.

Michigan (Univ.): neutron measurements of BH_4^- dynamics in neat and nanoconfined metal borohydrides.

Missouri-St. Louis (Univ.): neutron measurements of various alanates, borohydrides, and related materials.

NREL (Gov.): neutron measurements / isotherm measurements of various spillover related materials.

Ohio State (Univ.): neutron and x-ray measurements of borated compounds.

Penn (Univ.): neutron measurements of amidoboranes and other storage-related materials.

Penn State (Univ.): neutron measurements of various boron doped carbons.

- **RCB Hydrides** (Industry): neutron and x-ray measurements and DFT calculations of various alanates, borohydrides, and related materials; neutron imaging of hydrogen-storage beds.
- Sandia (Gov.): neutron measurements and DFT calculations of various alanates, borohydrides, and related materials.

Molecular Foundry (Gov.): neutron measurements of various metal-organic framework materials **U.C. Berkeley** (Univ.): neutron measurements of various alanates, borohydrides, and related materials.

Future Work

Remainder of FY2013:

- Continue to perform neutron-based structural and spectroscopic characterizations of new materials in conjunction with the needs of the DOE-funded projects, including nanoporous materials, borohydrides, and nanoscaffolding materials of interest.
- For example, start characterization work on MgH₂-LiBH₄ and MgH₂-TiH₂ hybrid storage materials.

Summary

Neutron methods continue to provide crucial, non-destructive characterization tools for the DOE Hydrogen-Storage Program.

- Agreement between NVS and DFT corroborates the recently synthesized LiN₂H₃BH₃ structure that was determined by diffraction methods.
- Neutron diffraction and spectroscopy indicate that the anion-ordered phases in RbBH₄ and CsBH₄ do exist but are short-ranged, unlike the long-range order observed for the lighter NaBH₄ and KBH₄ compounds.
- Neutron-scattering fixed-window scans are shown to be a valuable technique for making relative comparisons of BH₄⁻ anion rotational mobilities in a host of solid-state environments.
- QENS measurements of LiBH₄ sequestered in 4-nm controlled-pore carbon scaffolds indicated two types of BH₄⁻ anions: core BH₄⁻ anions with slower, bulk-like, jump reorientations and interface BH₄⁻ anions with faster, more disordered reorientations.
- QENS measurements of BH₄⁻ anions in a 1:1 hexagonal LiBH₄-Lil alloy reorient predominantly around the *c*-directed B-H bond at 125 K with additional jump exchanges between the axial H and other three trigonal H's occurring above this temperature, similar to what occurs for hexagonal LiBH₄ at 400 K.
- NV spectra are consistent with NMR results suggesting that the unusual S105 species found in some pretreated NaAlH₄ samples involves mobile AlH₄⁻ tetrahedral anions whose formation is promoted by hydroxide impurities.