Melt Processable PAN Precursor for High Strength, Low-Cost Carbon Fibers

May 15, 2013

Merit Review 2013 Status as of end of March 2013

Dr.–Eng. Felix L. Paulauskas MS&T Division

Oak Ridge National Laboratory Phone: 865-576-3785 Email: paulauskasfl@ornl.gov

This presentation does not contain any proprietary, confidential or restricted information

Project ID: ST093

Overview

Timeline

- Start 2007
- Project End date: 2015
- ~33% completed
- Budget
 - FY11 \$150K
 - FY12 \$200K
 - FY13 \$250K

Barriers

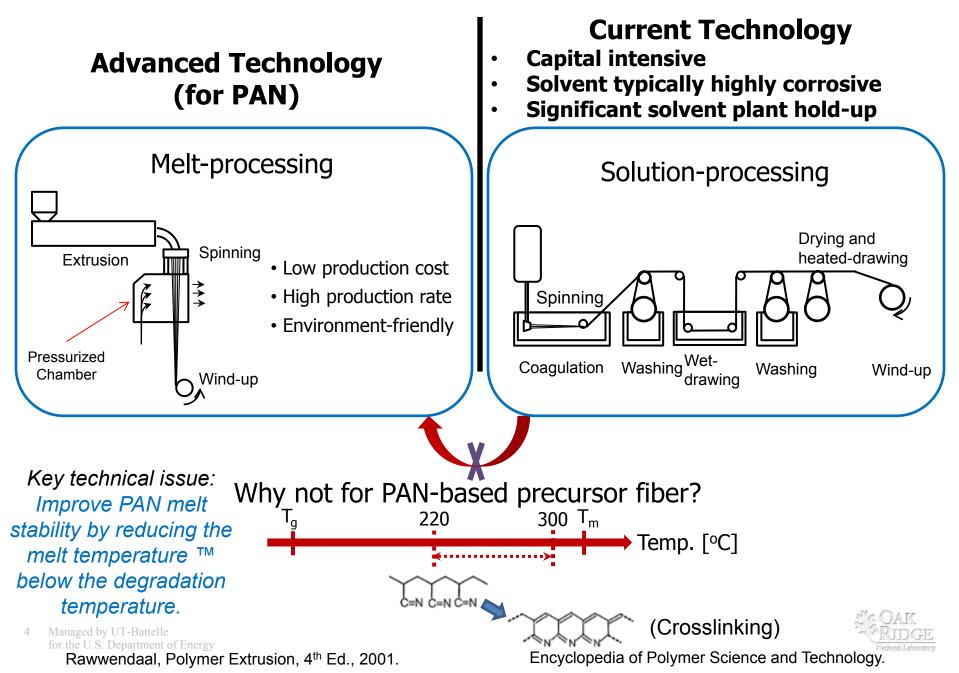
- High cost of high strength carbon fibers (CF)
- CF account for ca. 65% of the cost of the high pressure storage tanks

Partners

- ORNL (Host side)
- Virginia Polytechnic Institute
 - (Virginia Tech VT)
 - Prof. Dan Baird
 - Prof. J. McGrath

Relevance

- Objective: to reduce the manufacturing cost of high-strength CF's by means of:
 - Significant reduction in the production cost of the PANprecursor via hot melt methodology
 - The utilization of PAN-VA polymer (vinyl acetate, not MA, methyl acrylate).


This melt-spun PAN precursor technology has the potential the reduce the production cost of the high strength CF's by ~ 30% [Kline Study, 2007].

ST093

Melt Spinning vs. Wet Spinning

Hardware and Processing Comparison (Previously Presented)

VT/ORNL

	Nozzle Orifice Diameter (um)	Dope Filtration (um mesh)		Filament Draw-Ratio	Filament Voids	Filament Diameter (as-spun, um)
Initial	330/254	No f	iltration	3	Porosity Present	>100
	110	10 (2010)	From 2010	Dorosity <1% yol	15 – 30 (40)	
	55 (11/2011)	5	(12/2011)	5/6	Porosity ≤1% vol	(some variation)

VT/ORNL technology uses benign solvents, resulting in higher chamber pressure than BASF process.

The starting point for this project was based on 1980s BASF prior work.

BASF

Nozzle Orifice Diameter (um)	Dope Filtration (um mesh)	Filament Draw-Ratio	Filament Voids	Generated Filament (as-spun, um)
55 - 65	Not Indicated ("substantially homogeneous melt", patent indication)	6	Visible voids ≤ (0.1 - 0.2 um)	30 – 45 (50)

5 Managed by UT-Battelle for the U.S. Department of Energy

Presented in last Merit Review

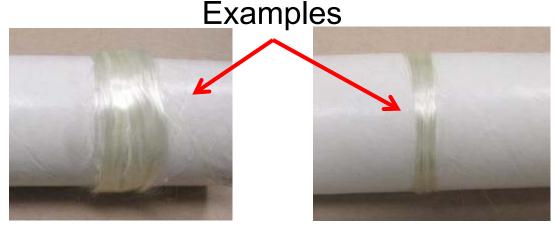
Technical Accomplishments FY12/13 ST093 THEN

Carbonized ORNL/VT PAN precursor (CF)

First round of results were discouraging.

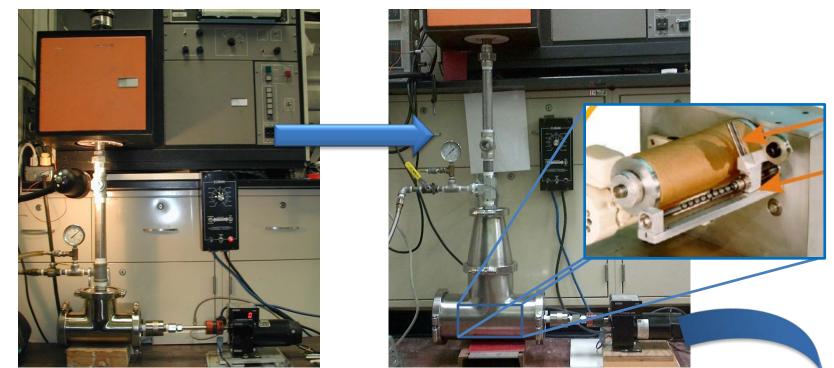
Date of carbonization	Sample name	diameter [µm]	Peak stress [ksi]	Modulus [Msi]	Strain [%]
Feb. 2012	VT_201201		Could not be u	nspooled	
Apr. 2012	VT_201203	11.58	76.5	16.1	0.52
Jun. 2012	VT_201205	10.55	77.4	6.2	1.67

Issues:

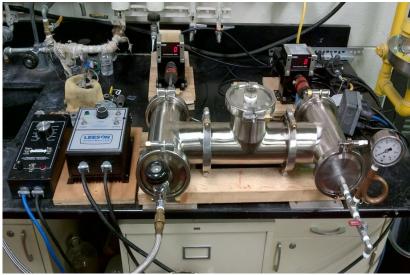

- Originally could not unspool fiber until Apr 2012.
- Impurities in dope due to improper level of filtration.
- Inadequate spinning equipment.
- No post-treatment equipment.
- Stretching was performed only during oxidation stage of conversion into carbon fiber.

Thus – low mechanical properties!

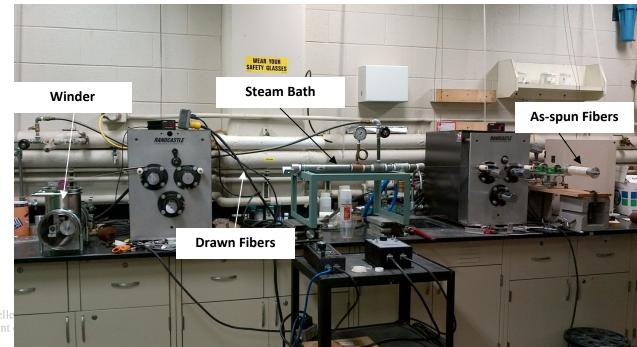
Improvement in the filament generation system:


- 1. Incorporation of a finer filtration system for polymeric dope.
 - Solid impurity in the PAN dope lead to clogging of the spinnerets and/or filament breakage. A fine 5 µm filter screen was installed.
- 2. Fabrication of new spinnerets with small holes.
- 3. Redesign of the pressure chamber and fiber take-up device.
 - Initially the filaments were being wound on top of each other (statically), making tow unwinding impossible (interfilamentary entanglement).

• To solve this problem, a new take-off device with traverse fiber guide was designed and installed inside the chamber. However, it was also necessary to enlarge the pressure chamber itself.

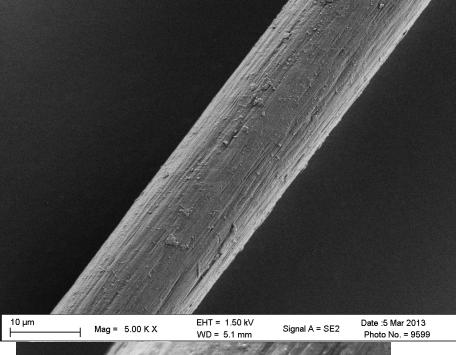

Newly improved fiber spinning system.

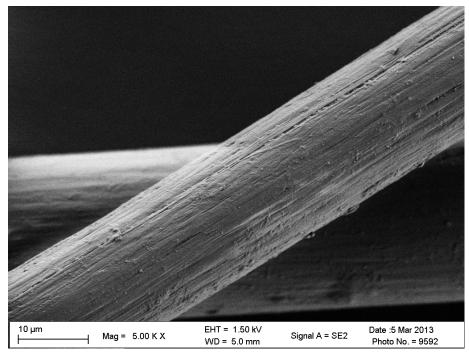
Melt spun fibers generated with new system/winder with traverse fiber guide.

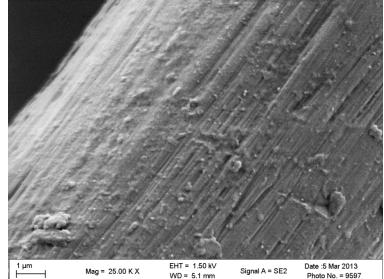


Precursor Post Treatment Stages

Left: Initial steam chase with a basic two-roller system. Stretching is achieved by differential rpm on each roller. (batch system)

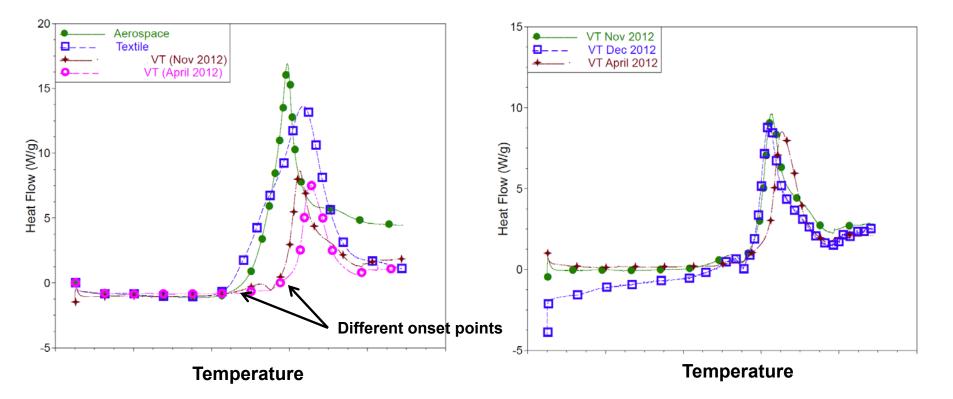

Below: A continuous stretching system with an inline steam bath.





9 Managed by UT-Battelle for the U.S. Department

Technical Accomplishments ORNL/VT Stretched PAN Precursor Dec 2012



- Precursor with very well aligned external fibril structures.
- No external pores
- In general, matches PAN precursor characteristics

ST093

Technical Accomplishments FY13 ST093 DSC Thermograms for VT/ORNL PAN Fiber

While there are some differences between exothermic behavior of melt-spun PAN fibers and wet-spun PAN commodity-grade fibers, the potential for conversion of the VT/ORNL fibers is there. (Qualitative comparison of the shape and characteristics of the DSC thermal curves show good similarities).

Progress Status FY12/13

ST093

PAN Precursor Filaments Mechanical Property Comparison

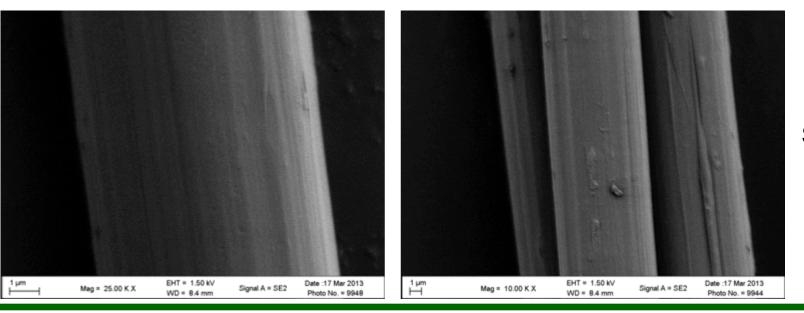
PAN BASED PRECURSORS				MECHANICAL PROPERTIES (Standard deviation between parentheses)				
Components	Name	Type of sample	Tow	Fiber diameter, µm (SD)	Peak stress,	Modulus, MSI	Strain at break, % (SD)	
		Industrial	precurs	ors				
AN/VA	FISIPE	Low Grade Textile	26k	14.15	54.2 (8.5)	0.5 (0.1)	15.7 (0.9)	
AN/MA	COURTAULDS	Commodity	50k	11.7	73.5 (10.5)	1.5 (0.4)	11.21 (1.36)	
AN/MA	Aerospace	Aerospace	3k	12.9	76.6 (5.6)	1.7 (0.2)	10.53 (0.76)	
	ORNL/VT Achiever							
	PAN-VA_12	%H2O	3/2010	67.1 (3.1)	37.6 (3.7)	1.0 (N/M)	11.89 (1.16)	As-Spun No
Presented in Merit Review 2012	PAN-VA(II)_1	2%H2O	7/2010	53.8 (4.8)	35.3 (4.0)	1.0 (N/M)	10.76 (1.08)	Post-treatment (no secondary
	PAN-V	A	11/2011	30-40	45.3 (5.72)	1.2 (0.15)	8.84 (0.67)	stretching)
VT May 2012 Precursor		or	5/2012	23.5*	33.90	1.18	8.97	With Post-
VTI	VT Nov 2012 Precursor		11/2012	21.5*	51.60	1.90	10.40	treatment – secondary
VT Dec 2012 Precursor			12/2012	20.2*	60.70	2.10	9.60	stretching

for the U.S. Department of Energy

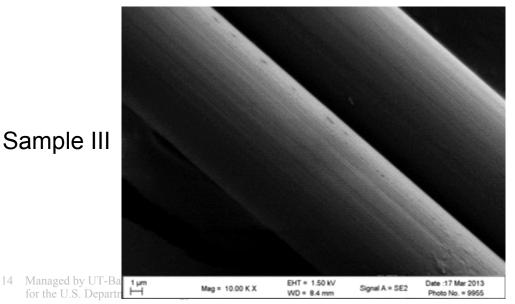
*Diameter range averaged 15-23 um

Progress Status FY12/13 Carbonized ORNL/VT PAN precursor (CF)

2nd round better: Highlighted values <u>surpass March Milestone</u>


	Date of carbonization	Sample name	diameter [µm]	Peak stress [ksi]	Modulus [Msi]	Strain [%]	
	Feb. 2012	VT_201201	Could not be unspooled				
	Apr. 2012	2012 VT_201203		76.5	16.1	0.52	
	Jun. 2012	VT_201205	10.55	77.4	6.2	1.67	
Progressing	Mar. 2013	VT_20121129_S4_A	8.20 (1.19)	143.7 (44.1)	20.1 (1.8)	0.70 (0.2)	
0		VT_20121129_S4_B	9.65 (1.19)	132.1 (44.9)	17.1 (0.8)	0.7 (0.2)	
gre		VT_20121129_S4_C	9.49 (1.27)	122.1 (33.2)	14.2 (2.4)	0.8 (0.2)	
es		VT_20121129_S5_A	8.24 (1.30)	129.3 (48.2)	26.8 (8.6)	0.5 (0.3)	
Si		VT_20121129_S5_B	8.81 (1.35)	132.1 (42.1)	21.6 (8.8)	0.7 (0.3)	
9n		VT_20121129_S6_A	8.34 (.12)	198.7 (70.5)	23.6 (.85)	0.81 (0.3)	
		VT_20121129_S6_B	7.34 (.74)	222.4 (84.0)	22.4 (2.6)	0.94 (0.3)	
		VT_20121129_S7_A	8.04 (.79)	261.4 (67.2)	25.3 (3.1)	1.0 (0.2)	
V		VT_20121129_S7_B	7.24 (.96)	212.0 (31.8)	20.8 (1.1)	1.0 (0.1)	
		VT_20121129_S9_A	7.01 (1.03)	104.0 (1.7)	25.5 (2.8)	0.4 (0.0)	
		VT_20121129_S9_B	6.91 (.74)	215.7 (113.2)	27.0 (2.5)	0.8 (0.4)	

Standard Deviation in parenthesis


ST093

Better: diameters, post-spin stretching capabilities, mechanical properties. Sample **S7_A** (**in bold**) *surpasses* the September 2013 milestone as well.

Technical Accomplishments FY13 ST093 ORNL/VT Carbonized PAN Fiber/Carbon Fiber

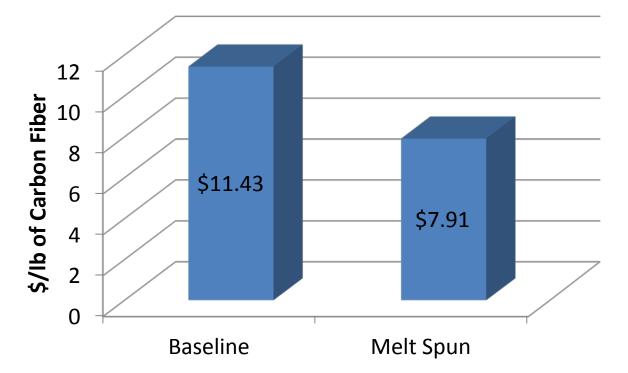
Sample II

14

- Very good outside surface.
- No detectable damage.
- No notching or cracking perpendicular to length.
- Fibers show typical diameter for carbon fiber.

ST093

FY13 Milestones Precursor Development


Task No.	Title	Milestone/Deliverable Description	Planned Completion Date
1	Spinning of 10m tow	Demonstrate spinning of a 10-m sample tow of ~10-12 micron fibers from high molecular weight (>200,000 MW) dope that can be easily spooled and de-spooled.	01/2013 Completed
2	Conversion into Carbon Fiber	Conversion of above sample at ORNL's Precursor Development System and yielding 15 Msi modulus and 150 ksi strength.	03/2013 Completed
3	Spinning of 10m 0.1k tow	Demonstrate spinning of a 10-m continuous ~100 filament tow of ~10-12 micron fibers from high molecular weight (>200,000 MW) dope that can be easily spooled and de-spooled for conversion at ORNL's Precursor Development System and yielding 20 Msi modulus and 200 ksi strength.	09/2013 In Progress, Partially Met

Potential CF Cost Matrix

Estimated Cost Savings of Finished Carbon Fiber Based on Implementation of This Technology

Factory Cost Comparison

The main benefit is the increase in throughput of the precursor production.

ST093

This represents ca. 31-33% savings in cost.

Factory cost is the manufacturer's cost to produce finished CF's. These cost estimates are derived primarily from the 2007 Kline reports and are based on petrochemical prices in CY2007Q1. Estimates based on oil at \$60/bbl.

Conclusions

- After successful introduction of the post-spinning stretching, filaments acceptable for carbonization were achieved.
- In spite of all the technical difficulties encountered over the course of this project, significant breakthrough was achieved this year by carbonizing the first stretched fiber samples of PAN precursor.
- All work to date was accomplished with vinyl acetate (VA) as the comonomer. Any comparison has to be made with other VA-based precursor or carbon fiber.
- Two FY13 milestones were met (January and March 2013). The September 2013 milestone is already partially met.

Future Work

- Rest of FY13
 - Conversion of PAN filaments (processed with different parameters) into carbon fibers
 - Consideration towards scalability, more and longer filaments and/or tows
 - Outline fundamentals towards the production of tows with longer length and higher filament count

Future

- The results of the work to date will need to be verified with a different comonomer (MA). In addition, further increase the mechanical property values, and make the move towards scaling up will be necessary.
- As indicated in the last AOP, the intended mechanical property targets are:

Modulus, Msi	Tensile Strength, ksi	Estimated Date
25	300	March, 2014
30	450	September, 2014
33	600	September, 2015

18 Managed by UT-Battelle for the U.S. Department of Energy

Relevance

• This technology will increase the throughput in the production of PAN precursor and will definitely decrease the cost of precursor production.

Approach/Strategy

- This work was based on prior abandoned work by BASF.
- To make possible the hot melt spinning of PAN precursor, innovative technical and chemical improvements were required.

Technical Accomplishments

• Feasibility was demonstrated after significant challenges and effort.

Collaboration and Coordination

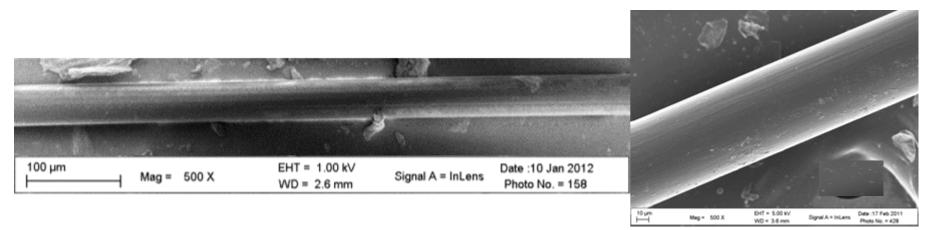
 ORNL worked closely with two departments at Virginia Tech – Chemistry Dept. – Prof. James McGrath for polymeric alterations/modifications and Chemical Eng. Dept. – Prof. Don Baird for rheology and filament spinning/generation.

Future Work

 Now that feasibility has been demonstrated, the main two tasks ahead of us are the refinement and scale-up of the process. For this reason, this project requires a reevaluation of the tasks as a function of the current allocation of resources.

ST093

TECHNICAL BACKUP SLIDES

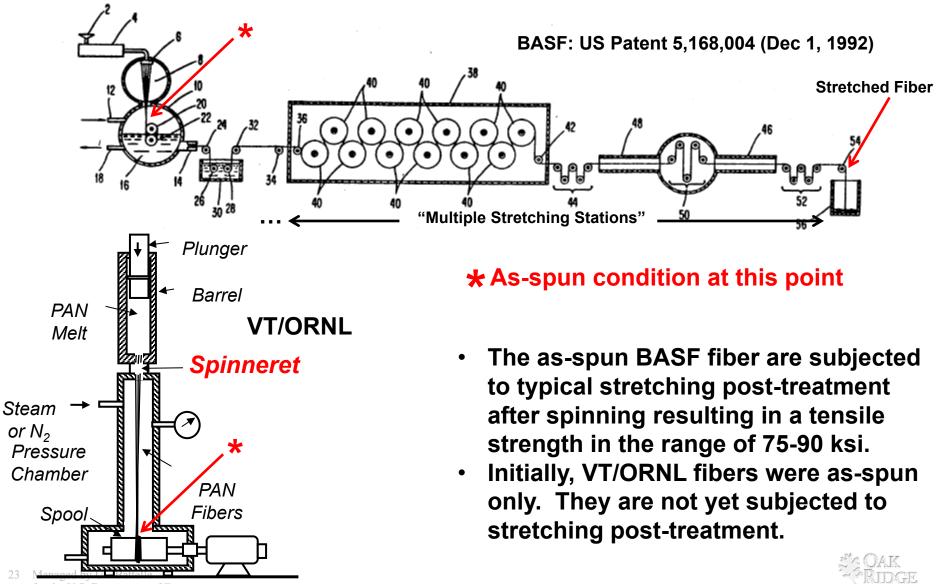


Melt-Spun PAN Precursor has a^{ST093} history of prior R&D

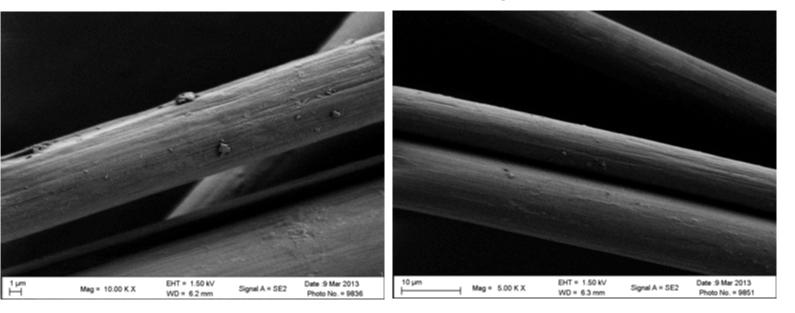
- BASF* developed melt-spun PAN precursor in the 1980s.
 - CF's were qualified for B2 bomber
 - Demonstrated 400 to ~600** KSI fiber strength and 30 40 MSI modulus; even better properties were thought to be achievable
 - AN content was 95% 98% (consistent with high strength)
- Lower production cost than wet-spun fibers by ~30%.
 - Typical precursor line speed increased by ≥ 4X at winders
- Program was terminated in 1991 due to CF market collapse at cold war's end, a forecasted long (~ 10 yr) recovery period, and solvent issues (acetonitrile, nitroalkane).
- This work has produced various US patents and publications.

- Incorporation of post-spinning treatment (stretching):
 - As-spun, the generated filaments have large diameters (25-40 µm)

- Matches the range of as-spun filament diameter of the prior work.
- Fibers are too big for conventional oxidation.
- Fibers indicates a low level of molecular orientation.


Thus,

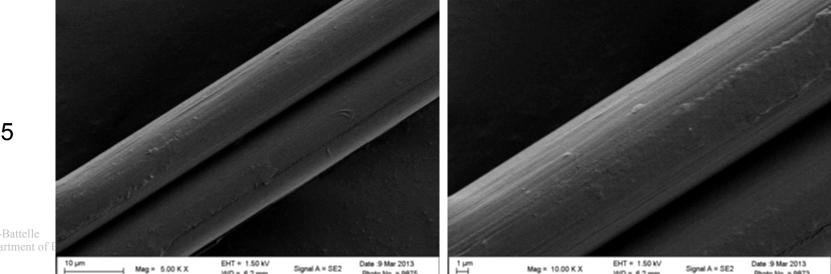
A post-treatment stage is necessary to improve the quality of the fiber. (The prior R&D work had this post treatment stage as well.) After this stretching treatment, the prior-work diameter was matched.


Filament Generation System Comparison BASF vs. VT/ORNL

ST093

for the U.S. Department of Energ

Technical Accomplishments FY13 ST093 ORNL/VT Oxidized PAN Fiber (prior-stretched precursor)



WD = 6.2 mm

Sample 2

WD = 6.2 mm

Dhoto No = 997

Dhoto No. = 9874

Sample 5

Managed by UT-Battelle for the U.S. Department of I

Unique ORNL Capability

Precursor Evaluation System (PES)

- Designed for development of conventional processing recipes with limited quantities of precursor
- Residence time, temperature, atmospheric composition, and tension are independently controlled in each oven or furnace
- Can process single filament up to thousands of filaments
- Precise tension control allows tensioned processing of ~20-filament tows
- Single stage or multiple stage evaluation during conversion

- Conventional Pilot Line (PL)
 - 1:20 scale of a commercial grade production line
 - Capacity for 8 tows
 - Upgrades underway for automated operation and production of high strength CF
 - Unique capability among FFRDC's and universities

25 Managed by UT-Battelle for the U.S. Department of Energy This high strength CF project is benefiting from a decade of prior development in CF R&D at ORNL

ST093