

Room Temperature Hydrogen Storage in Nano-Confined Liquids

John J. Vajo

HRL Laboratories, LLC 15 May 2013

Project ID # ST102

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 05 March 2012
- Project end date: 15 February 2015
 C. Efficiency
- Percent complete: 30%

Budget

- Total project funding
 - DOE share: \$1.2M
 - Contractor share: \$0.3M
- Funding received in FY12:
 - \$450K (DOE)
 - \$78K (Contractor)
- Funding for FY13:
 - \$200K (DOE)
 - \$93K (Contractor)

Technical Barriers

- A. System weight and volume
- - E. Charging and discharge rates

Partners

- No formal partners
- Tom Autrey (PNNL)
- David Farrusseng (CNRS)

Relevance –

Project Goals and Objectives

Goal

Develop hydrogen storage materials with (material basis) hydrogen densities of \geq 6 wt% and 50 g/l at room temperature and <350 bar that are compatible with the vehicle engineering and delivery infrastructure for compressed gas storage

Overall Objective

Use measurements and simulations to characterize, understand, and optimize the (enhanced) hydrogen storage capacity of nano-confined liquids (liquids confined within nanoporous scaffolds)

Objectives March 2012 – March 2013

- Establish procedures for measuring hydrogen sorption (solubility) in liquids and liquid-based composites at pressures up to ~100 bar
- Validate procedures with bulk solvents
- Determine enhanced solubility of nano-confined liquid composites
- Develop simulation scheme to understand enhanced solubility effect

Enhanced Solubility in Nano-Confined Liquids

LABORATORIES

Hydrogen storage in nano-confined solvent/porous scaffold composites

- Validate and understand (experimentally and computationally) the enhanced solubility effect
- Optimize and advance effect to achieve storage targets

HRL

Gas/Liquid Solubility Measurement Procedure

• Technique (including ultrasonic agitation) also works for nano-confined solvent / porous scaffold composites

H₂ Solubility in Bulk Hexane

Samples prepared by helium purging and LN2 freeze/pump/thaw cycles

Average values agree with literature values within ~15%

• Errors reflect uncertainty in correction for hexane vapor pressure

H₂ Solubility in Nanoconfined Solvent Composites

Begin with a reported system to validate effect:

MCM-41 scaffold (3.4 nm diameter, 1-D pores; commercially available)

Approximate actual Pore : Solvent size ratio (4.4)

	Bulk n-Hexane* (mmol/cm³)	Empty MCM-41* (mmol/cm ³)	Composite Hexane/MCM-41* (mmol/cm ³)	Capacity wrt bulk hexane	Capacity wrt empty MCM-41
CNRS Chem Phys Lett 2010 JACS 2012	0.17	0.87	2.7 (60 vol%)	15.9 x large enhancement	3.1 x large enhancement
HRL	0.185	0.4 ± 0.1	0.19 (52 vol%) 0.18 (76 vol%) 0.18 (84 vol%)	1.03 x 0.97 x 0.97 x no enhancement	0.48 x 0.45 x 0.45 x lower

- Bulk hexane and empty scaffold capacities agree approximately
- Composite capacities do not agree (large enhanced capacities not validated)
- Solubility in nanoconfined hexane is similar to bulk

- Solubility in composite is similar to bulk (no large enhancement)
- 52 vol% composite capacity may be influenced by open scaffold

Smaller Pore: Hexane/Activated Carbon

PICA activated carbon: <2 nm pore size (2.5 vs. 4.4 pore:solvent size ratio)

• This appears to be an experimentally significant enhancement – of 2x

• Lower size ratio may further increase enhancement (will be tested)

Hexane/Activated Carbon: Filling Dependence

- Limit of high filling shows 2x enhancement
- However, volumetric capacity is still lowered compared to empty scaffold
- Higher pressures may favor composites (will also be tested)

Simulation of Enhanced Solubility Effect

- Use molecular dynamics simulations of solvent/scaffold composites to quantify the effect of nano-confinement on the solvent properties (spatial density variations, orientational effects, thermodynamics)
- LAMMPS molecular dynamics simulator (classical, developed by Sandia) with CHARMM forcefields (Leonard-Jones with cutoffs)
- Steps to full simulations :
 - bulk scaffold material (silica) Completed
 - empty nanoporous scaffold (silica with 2 nm pore) Completed
 - bulk solvent (hexane) Nearly completed, March 2013
 - solvent/scaffold composite (hexane in 2 nm silica pore)
 - additional pore diameters, H₂ solubility in composite
- Metrics used for validation of simulation :

- density, pair correlation functions, thermodynamic quantities

Simulation of Silica Scaffold

Details:

- ~16 000 atoms
- ~6.5 x 6.5 x 6.5 nm³
- 300 K
- ~2 nm dia x 6.5 nm long pore
- Si-O-Si and Si-OH pore surface bonds
- Si-O bond length = 0.1626 ± 0.0027 nm (exp. = 0.1600 - 0.1615 nm)
- More disorder near pore

LABORATORIES

Simulation of Bulk Hexane

- 250 hexane molecules
- Volume =
 - 4.5 x 3.25 x 3.7 nm³
- Temperature = 300 K
- Final bulk density = 0.662 g/cm³ $(exp. = 0.659 \text{ g/cm}^3)$
- Spatial density profiles, pair correlation functions, and thermodynamic parameters are being calculated

- No formal partners
- Informal collaborators
 - Tom Autrey (PNNL) email correspondence and discussions (possible effort on NMR and/or PDF of confined liquids)
 - David Farrusseng (CNRS) email correspondence

- Continue to optimize enhanced solubility effect
 - vary pore : solvent size ratio (test larger solvents, eg $C_{16}H_{34}$)
 - test branched solvents (eg iso-octane)
 - test additional scaffolds (eg MOFs, micoporous polymers)
- Investigate effect of pressure (to exceed scaffold adsorption)
- Perform full solvent / scaffold simulations
 - hexane in 2 nm silica pore
 - vary pore and/or solvent size
 - consider including H₂ as solute
- Go/No-go decision (Sept. 2013, month 18)
 - demonstrate mechanism to achieve 1 wt% storage

- Solubility enhancements of ~2x up to 50x have been reported for gasses, including H₂, in liquid solvents that are nano-confined in scaffolds having pore sizes <~10 nm
- An enhancement of ~20x at 350 bar with a scaffold pore volume of 4.0 cm³/g would enable room temperature material-based hydrogen storage densities of 6 wt% and 50 g/L
- This phenomena has not been thoroughly explored or understood (only a limited number solvents and scaffolds have been characterized)
- This approach has the potential to significantly improve the capacity of compressed hydrogen systems with minimal changes to vehicle engineering and delivery infrastructure, thus facilitating technology transition
- Initial measurements have not validated reports of 15x enhancements for hexane/MCM-41 (bulk values, ie 1x enhancements, were observed)
- However, hexane/activated carbon appears to show a 2x enhancement

Technical Backup Slides

Enhanced Solubility: Mechanism

Free Energy

Reaction Coordinate

Simulations to test mechanism

What gravimetric and volumetric storage densities could be obtained?

- 1) Assume a solubility = C_L/C_g of 200% for H_2 in, eg, nano-confined hexane (high, but within demonstrated range)
- 2) Assume 200% can be achieved at 350 bar (big assumption, but 156% at 60 bar reported)
 - C_g(H₂@350 bar) = ~14.5 mol/L
 - Therefore, C_L = 29 mol/L
- 3) Assume 4.0 cm³/g pore volume scaffold (very high but possible, demonstrated)
 - 4.0 cm³ gives 2.64 g-hexane ($\rho = 0.66 \text{ g/cm}^3$) MCM-41 Y alumina MCM-41 SBA-15
 - 1 g-scaffold + 2.64 g-hexane = 3.64 g-total
 - 29 mol/L in 0.004 L gives 0.23 g-H₂
 - 0.23 g-H₂/3.64 g gives ~6 wt% H₂ (~3.5 H₂/C₆H₁₄)
 - 0.23 g-H₂ in 0.0045 L gives 50 g-H₂/L

- **1)** Achieving solvent/scaffold with sufficient H₂ solubility
 - only a small number of scaffolds tested (mainly porous silica's and alumina's)
 - there is a large range of possible scaffold materials to try, eg:
 - carbon's (activated, aerogel, mesoporous, templated)
 - MOF's
 - porous polymers
 - other than the relationship with pore size, what determines the solubility is unknown (*ie, why does hexane in 8.7 nm silica aerogel give 400%*), eg:
 - solvent size/pore size systematics
 - solvent functional groups
 - pore surface chemistry

2) Recovered hydrogen will be contaminated by solvent vapor

- engineering solutions (eg, selective membrane/filter, condense and recycle)
- material solutions:
 - use higher molecular weight solvents
 - use ionic liquids with alkyl side chains
 - polymerize or oligomerize solvent
 - tether solvent to scaffold