2013 DOE Hydrogen and Fuel **Cells Program Review**

Hydrogen Storage in Metal-Organic Frameworks

P. I. Jeffrey Long

+ Presenter Craig Brown Lawrence Berkeley Nat. Lab., Univ. of California Berkeley Nat. Inst. of Standards and Technology, General Motors Co. May 15, 2013 Project ID #: ST103

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start: April 2012
- Finish: March 2015
- 30% complete

Budget

- Total project funding
 - DOE share: \$2,100k
 - Contractor share: \$525k
- Funding received in FY12:
 - \$500k
- Funding planned for FY13:
 - \$600k

Barriers

- Barrier addressed
 - A. System Weight and Volume

Partners

- LBNL: synthesis and modeling
- NIST: neutron diffraction (start Oct. 2012)
- GM: high-pressure adsorption (start July 2012)
- Project lead: Jeffrey Long (LBNL)

Relevance

Project objectives

- Research and development of on-board systems that allow for a driving range greater than 300 miles.
- Materials sought with the potential for meeting the DOE targets of reversible uptake:
 - 2017 targets: 5.5 % H_2 by mass, volumetric capacity of 40 g/L
 - "ultimate full fleet" targets: 7.5 % H₂ by mass, 70 g/L.
- Synthesize new metal-organic frameworks capable of achieving the -20 kJ/mol adsorption enthalpy required for use as hydrogen storage materials operating under 100 bar at ambient temperatures

Energy Efficiency &

Approach

- Task 1: Synthesis of Metal-Organic Frameworks(Jeffrey Long-LBNL)
- **Task 2:** Characterization of Framework-H₂ Interactions (Craig Brown-NIST)
- **Task 3:** First-Principles Calculations of Hydrogen Binding Enthalpies (Martin Head-Gordon-LBNL)
- **Task 4:** High-Pressure H₂ Adsorption Measurements (Anne Dailly-GM)

Approach Multiple H₂ Binding Sites per Metal

□ Isotherms simulated using dual site Langmuir model with estimated parameters

□ Binding enthalpy and associated entropy not yet known for Mg²⁺ in this geometry

Energy Efficiency &

Approach: Milestones and Go/No go

Due date	Description	% Comp	Status March 2013		
03/13	Go/No-go (Task 1): Demonstration of ability to prepare 5 mixed functionality ligands allowing for post-synthetic insertion of metal cations	100%	7 ligands containing both carboxylate and pyridine/phenol binding sites have been prepared		
03/13	Go/No-go (Task 1) : Development of in silico screening for calculating opposing pore surface distances	100%	Software completed and manuscript submitted		
03/13	Go/No-go (Task 1): Preparation of two new MOFs containing coordinatively-unsaturated high-valent cations.	100%	Frameworks with open Al ³⁺ and Ti ³⁺ sites have been synthesized		
03/13	Milestone (Task 2): Demonstrated ability to locate and uncover detailed descriptions of high-enthalpy H ₂ binding sites in high-valent MOFs via neutron diffraction	30%	Diffraction measurements on pyridine and MOF-74 variants performed. Analysis underway		
03/13	Milestone (Task 3): Demonstration of a correlation between calculated and experimentally observed H ₂ binding affinities and usefulness in facilitating design of new materials	100%	Calculated H ₂ binding parameters agree with experimental values		
03/13	Milestone (Task 4): Demonstrate ability to accurately measure H ₂ adsorption in MOFs at 298 K and pressures up to 350 bar	30%	High-pressure system installed and some benchmark samples measured		
U.S. DEPARTMENT OF _ Energy Efficiency &					

Renewable Energy

<u>GM</u>

((()))

Accomplishments: Task 1 Synthesis of Expanded MOF-74 Analogues

- Higher surface areas and pore sizes will allow systematic study of highpressure adsorption
- Robust framework and extra volume to accommodate analogous ligands that can support highly exposed metal cations

Accomplishments: Task 1 Isosteric Heats of H₂ Adsorption in M₂(dobpdc)

defect sites

DEPARTMENT OF

Energy Efficiency &

Accomplishments: Task 1

Synthesis of M³⁺-Based Metal-Organic Frameworks

Two new frameworks displaying the highest reported surface areas for Ti³⁺ and Al³⁺ MOFs have been synthesized

Accomplishments: Task 1 Synthesis of Mixed Functionality Ligands

ongoing. Porous, crystalline phases have been identified for 1,2,4,5.

Energy Efficiency &

Accomplishments: Task 2 Powder Diffraction of Cobalt and Nickel MOFs

X-ray and neutron powder diffraction provides MOF structure and H_2 adsorption sites (determined crystal structure/analysis in progress)

measurements performed at APS (XRS) and NIST (neutrons)

Accomplishments: Task 2

Neutron Inelastic Scattering of Cobalt and Nickel MOFs

- Distribution of highly active sites shifts H₂ rotational lines away from bulk line
- At least three different adsorption sites identified, becoming more 'bulk'-like by ~3H₂:metal loadings.

measurements performed at NIST

Energy Efficiency &

Renewable Energy

DEPARTMENT OF

Accomplishments: Task 2 Determination of Cr-BTT structure

Structure determination

• Correlate enthalpy to structure / electronic configuration of TM

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Feeds into calculations

Accomplishments: Task 2 Determination of Co-BTT:H₂ adsorption potential

Inelastic neutron scattering of H₂ provides

- Determination of binding strength
- Loading dependence of different sites
- Strict comparison for theory

Accomplishments: Task 3 Calculations on Cu-BTT: Structure

Structure prediction

• Pre-requisite for H₂ binding

DFT calculations using ω B97X-D

- Near-quantitative agreement
- JACS 135, 1083 (2013)

Bond (Å)	exp. ^b	<u>calc</u> .
M- <u>Cl</u>	2.504	2.456
M- <u>N(</u> 1)	2.007	2.040
<u>N(</u> 1)-N(1)	1.344	1.323
N1- <u>N(</u> 2)	1.323	1.310
<u>N(</u> 2)–C	1.354	1.332

Angle (°)	exp. ^b	<u>calc</u> .
<u>Cl</u> -M- <u>N(</u> 1)	87.0	89.5
M- <u>N(</u> 1)-N(1)	123.2	121.8
M- <u>N(</u> 1)-N(2)	127.0	128.2
<u>N(1)-N(2)-C</u>	104.3	103.8
<u>N(</u> 2)-C-N(2)	111.7	112.6

Accomplishments: Task 3 Calculations on M-BTT: H₂ binding

DFT calculations of H₂ binding are sensitive to functional used

- ZPE and BSSE corrections are used for all calculations
- LDA, GGA (BP86) and hybrid (B3LYP) show large errors
- The range-separated dispersion-corrected functional (ωB97X-D) is quite accurate

functional	Mn: HBE (kJ/mol)	Cu: HBE (kJ/mol)
LDA	-27.2	-18.9
BP86	-0.7	3.1
B3LYP	-2.7	1.3
<i>ω</i> B97X-D	-14.9	-9.4
exp.	-11.9	-10.4

JACS 135, 1083 (2013)

Energy Efficiency &

Accomplishments: Task 3 Calculations on M-BTT: M....H₂ & IR

4 4			M =	Mn	C	Cu	Zn
			calc.	exp.	calc.	exp.	calc.
		site I only	-14.9	-11.9ª	-9.4	-10.4 ^a	-14.0
	HBE (kJ/mol)	site II only	-7.4		-6.9		-7.6
b. site I only		site I + II	-11.0	-10.3 ^b	-8.5	-9.5 ^b	-11.5
she st	H ₂	M…H ₂ (site I)	2.33	2.27°	2.56	2.47°	2.27
	(Å)	Cl…H ₂ (site II)	3.25	3.47°	3.20	3.46°	3.22
	Δν	site I	-125	-123 ^a	-78	-100 ^a	-129
	(cm ⁻¹)	m ⁻¹) site II	-16	-31 ^a	-14	-4 1ª	-16
al atta Land II	"Based on	infrared dat	a. ^b Zero-c	overage iso	osteric he	eat of adso	rntion.

Calculated H₂ binding parameters agree with experimental values and can be used to explore possible new materials

Accomplishments: Task 4 **High-Pressure H₂ Adsorption System**

Pneumatic

Regulator

T-Type

Thermocouple

• Max operating pressure: 344 bar

Thermoelectric temperature control

Large sample capacity (~500 mg)

T1

- Challenges of 350 bar H₂ measurements:
- System needs to be calibrated very well to minimize uncertainty
- 0.05 cm³ reference volume error \rightarrow ~500 µmol deviation at 350 bar
- 0.5 g of MSC-30 adsorbs ~3000 µmol at 350 bar and 298 K
- Volumes needed recalibration after installation

U.S. DEPARTMENT OF

Accomplishments: Task 4 Evaluation of Benchmark Materials

- Benchmark materials MSC-30 & MOF-177 measured for instrument validation
- Measurements taken after recalibration show good agreement with previous results (agreement is within uncertainty)
- High-pressure (>180 bar) range still needs to be recalibrated

Energy Efficiency &

Collaborations

Project team within DOE Fuel Cell Technologies Office:

- Lawrence Berkeley National Laboratory (prime, National Lab.)/UC Berkeley:
 - Jeffrey Long: Synthesis and basic characterization of MOFs
 - Martin Head-Gordon: Calculation and prediction of H₂ binding energies
- National Institute of Standards and Technology (sub, National Lab.):
 - Craig Brown: Neutron diffraction and neutron spectroscopy
- General Motors Company (sub, Industry):
 - Anne Dailly: Measurement of high-pressure H₂ uptake capacity

Additional collaborations:

- Oberlin College (University):
 - Stephen Fitzgerald: Infrared spectroscopy
- Purdue University (University):
 - Timothée Pourpoint: Development of high-pressure H₂ adsorption system

Proposed Future Work

Task 1: Synthesis of Metal-Organic Frameworks

- Continue structural characterization of AI-BTB and Ti₃O(BDC)₃
- Scale up synthesis of bipyridine containing MOFs and insert metal cations
- Use *in silico* screening technique to discover new materials with optimal opposing surface distances
- Complete synthesis of catechol and biphenol type ligands and prepare new MOFs with these ligands containing post-synthetically inserted ligands

Task 2: Characterization of Framework-H₂ Interactions

- Solve structure for new Co-MOF74'
- Understand structural loading dependence with H₂
- Complete Milestone for demonstrating utility of techniques
- Obtain newest MOFs from Long Group
- Perform diffraction measurements on most promising candidates, to give feedback on highest adsorption sites to partners

Energy Efficiency &

Proposed Future Work

Task 3: First-Principles Calculations of Hydrogen Binding Enthalpies

- Modifications to Al(OH)bpydc (MOF-253) based on metal insertions at the bpy binding site. Explore H₂ binding in this system as a function of metal and counter ions, and linker modifications
- Exploring metal insertions in deprotonated catechols. What are the solvent binding energies (for desolvation)? Make reliable H₂ binding predictions for complete and partial desolvation
- Design principles for target H₂ binding energies. Identify the relevant descriptors as a basis for rational design
- **Task 4:** High-Pressure H₂ Adsorption Measurements
 - Further validate high-pressure H₂ adsorption in metal-organic frameworks and compare results to theoretical and spectroscopic predictions
 - Modify instrument program and test commercially available (benchmark) MOF samples for 20-30 cycles up to 350 bar
 - Test high performing MOFs for 100 cycles up to 350 bar

Summary

- A variety of expanded MOF-74 analogues, showing high surface area and high H₂ binding enthalpies have been synthesized
- Neutron powder diffraction and inelastic scattering have been utilized to solve new structures and characterize the strength of M²⁺-H₂ interactions
- Calculated H₂ binding enthalpies show excellent agreement with experimental values
- High-pressure adsorption system validated, calibrations are ongoing
- The combination of theoretic predictions, synthetic work, and structural characterization will be used to prepare new frameworks with a larger density of strong H₂ binding sites

Capacity	2012	2013	2017*	Ultimate*	*DOE targets	
Gravimetric	0.016 kg H ₂ /kg adsorbent	0.016 kg H ₂ /kg adsorbent	0.055 kg H ₂ /kg system	0.075 kg H ₂ /kg system		
Volumetric	0.011 kg H ₂ /L adsorbent	0.011 kg H ₂ /L adsorbent	0.040 kg H ₂ /L system	0.070 kg H ₂ /L system		

Technical Back-Up Slides +

Optimum Pore Sizes for Hydrogen Storage

□ Calculated using Monte Carlo simulations with both cylindrical and slit pores

Rzepka, Lamp, de la Casa-Lillo J. Phys. Chem. B 1998, 102, 10894

Geometric Calculation of Opposing Wall Distances

- Probe is inserted on the pore surface, and moved away in a direction normal to the surface until it collides with the opposing wall
- This is repeated until the entire pore surface has been traversed by the algorithm to create a distribution of opposing wall distances

Sumida, Rogow, Herm, Long, submitted

Energy Efficiency &

Opposing Surface Area Distribution (OSAD)

Sumida, Rogow, Herm, Long, submitted

Synthesis of M₂(dobpdc)

