Project ID: ST104

Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H₂ Storage Materials

Shih-Yuan Liu (Isy@uoregon.edu) Department of Chemistry, University of Oregon 2013 Annual Merit Review Meeting Arlington, Virginia May 15, 2013

This presentation does not contain any confidential or otherwise restricted information

Overview

Timeline

start date: March 5, 2012 end date: March 4, 2015 percent complete: 35%

Proposed Budget

total project funding: \$2,526,606 DOE share: \$2,020,942 (includes \$862,000 in FFRDC funds) cost share: \$505,664 FY12 DOE funds: \$531,558 FY13 DOE funds: \$180,000

Technical Barriers (Vehicular)

- A. system weight and volume
- C. efficiency
- D. durability/operability
- E. charging/discharging rates
- J. thermal management
- R. regeneration processes
- S. by-product/spent material removal

Project Team

0

Tom Autrey Abhi Karkamkar Doinita Neiner Kshitij Parab Jamie Holladay

Prof. David Dixon

THE UNIVERSITY OF

ALABAMA

Dr. Paul Osenar

Project Objectives – Relevance

Objectives:

- develop novel chemical H₂ storage materials that have the potential to enable non-automotive applications and meet the 2017 DOE targets for vehicular applications
- focus on three classes of materials: liquid-phase, high-capacity, reversible system

Team Member Expertise:

University or Oregon (UO): synthesis and development of CBN H₂ storage materials Pacific Northwest National Laboratory (PNNL):

- experimental characterization of materials (thermodynamics, kinetics, thermal stability, H₂ stream purity)
- scale up synthesis

The University of Alabama (UA): computational chemistry

Protonex: fuel cell system integration and testing expertise for non-automotive market applications

Tasks

- 1) Synthesis of proposed materials (UO, PNNL)
- 2) Characterization of synthesized materials (PNNL)
- 3) Theory (UA)
- 4) Scale-Up Synthesis (UO, PNNL)
- 5) Fuel Cell Testing (PNNL, Protonex)

Potential Applications

Specific Synthetic Targets – Approach

Multi-pronged approach to address diverse potential applications

Approach Explanation

Well-Defined Liquid Systems:

- The materials remain well-defined molecular species throughout the lifecycle, from fully charged fuel to the spent fuel.
- Potential advantages of well-defined nature include:
 - no involvement of insoluble polymeric materials better characterization of reaction products and reaction processes facilitates computational and mechanistic studies facilitates formulation as liquids
- Compound B is indeed a liquid and room temperature

Potential Reversible Systems:

• Predicted overall thermodynamics is conducive to reversibility.

 $\Delta G \sim 0 \text{ kcal/mol}$

 ΔH ~ +7 to +12 kcal/mol $\rm H_2$

High-Capacity Exothermic Systems:

- Materials have high H₂ content.
- Hydrogen desorption is exothermic.

Preliminary Results: A Single-Component Liquid H₂ Storage Material

Wei Luo, Patrick Campbell *J. Am. Chem.* Soc. **2011**, 133, 19326-9.

Accomplishments: Synthesis of Materials

Accomplishments: Characterization

Accomplishments: Characterization Boiling Point and Polarity

G3MP2 (aug-c-pVTZ)

bp: 70 °C at 0.18 torr extrapolated: 335 °C at 1 atm

Compound B is a polar, high-boiling compound with likely low vapor pressure.

Wei Luo *Dalton Trans.* **2013**, 42, 611-614.

Edward Garner David Dixon

Accomplishments: Characterization Viscosity & H₂ Purity of Compound B

Accomplishments: TGA-MS Analysis

No substantial loss of weight up to 50 °C.

Abhi Karkamkar Doinita Neiner Kshitij Parab Tom Autrey

Accomplishments: Thermal Stability Assessment Decomposition of B at Various T

 decomposition not consistent with simple 1st or 2nd order decay behavior.

13

- extrapolation of the data can lead to stability predictions at room temperature and at 0 °C
- at 25 °C: 150 days to release 1 equiv. H₂
- at 0 °C: 17 years to release 1 equiv. H₂

Kinetic studies indicate neat compound B can be relatively stable at 0 °C. The data are consistent with studies done by NMR.

Pacific Northwest

Abhi Karkamkar Doinita Neiner Kshitij Parab Tom Autrey

Accomplishments: Compound B as a Base Fuel in Fuel Blends

Objectives:

- improve H₂ storage capacity by mixing with high-capacity materials
- improve materials properties such as lower melting point of charged and spent fuel, H₂ release kinetics, etc.

Solubility Results:

- AB is moderately soluble in **B** (ca. 14 mol % determined by NMR).
- Compound **D** is fairly soluble in compound **B** (50 mol% of **D** easily dissolved in **B**).
- Compound **K** is not very soluble in compound **B**. \rightarrow **B** + **K** fuel blend is a NO-GO.

Compound B can serve as a carrier solvent for additional H₂ storage material

Abhi Karkamkar Doinita Neiner Kshitij Parab Tom Autrey

14

Accomplishments: Compound B + AB (2:1) Thermal H₂ Desorption Studies

Fuel blends (B : AB = 2 : 1) leads to improved H_2 storage capacity, faster kinetics (relative to thermal H_2 desorption for pure AB), and lower spent fuel melting point.

• thermal release at 110 °C

15

- B : AB = 2 : 1 (molar ratio)
- experimentally determined H₂ storage capacity is 5.6 wt%
- spent fuel mixture remains liquid phase after cooling to room temperature
- H₂ release follows the faster kinetics for **B** under thermal conditions rather than the relatively slow release kinetics for AB under thermal conditions.
- data consistent with AB releasing 2 equiv. of H₂

Abhi Karkamkar Doinita Neiner Kshitij Parab Tom Autrey

Accomplishments: Compound B + AB (2:1) Catalytic H₂ Desorption Studies

- catalytic release at 80 °C
- 10 mol% FeCl₂
- higher conversion to spentfuel products (at 39 ppm) under catalytic condition observed

Catalytic H_2 desorption applicable to the B + AB blend.

Abhi Karkamkar Doinita Neiner Kshitij Parab Tom Autrey

Accomplishments: Compound B + D (1:1) ¹⁷ Thermal H₂ Desorption Studies

- thermal release at 110 °C
- B : D = 1 : 1
- 4.7 wt% H₂ capacity
- spent fuel mixture remains liquid phase after cooling to room temperature
- nature of the spent fuel trimer still to be determined, e.g., homo- or hetero-trimer
- relatively clean reaction

Fuel blends (B : D = 1 : 1) leads to lower spent fuel melting point. ¹¹B NMR indicates relatively clean desorption process.

Pacific Northwest National Lagoratory Abhi Karkamkar Doinita Neiner Kshitij Parab Tom Autrey

Accomplishments: Mechanism of Thermal H₂ Desorption for Compound B (Theory)

18

Predicted Bond Dissociation Energies (BDE) and Dissociation constants (Keq): G3MP2 level (298K)	J NH_2 BH_2 BDE = 28.6 $\Delta G (298) = 24.2$ $\Delta G (Et_2O) = 28.2$ $\Delta G (THF) = 32.8$ $K_{eq} = 1.62 \times 10^{-18}$ $K_{eq} = 2.14 \times 10^{-21}$	F H.Me BDE = 32.5 $\Delta G (298) = 27.8$ $\Delta G (Et_2O) = 31.1$ $\Delta G (THF) = 35.0$ $K_{eq} = 4.19 \times 10^{-21}$	$H_{eq} = 3.0$	-Bu 3.8 () = 23.9 () = 21.9 () = 20.4 7×10^{-18} $() = 8.06 \times 10^{-17}$
	K_{eq} (THF) = 9.16 x 10 ⁻²⁵	K_{eq} (THF) = 1.98 :	x 10 ⁻²⁶ K _{ea} (THF	$) = 1.12 \times 10^{-15}$
 CBN Heterocycles have stronger B-N bonds and less driving force for bond dissociation. This has potential consequences on H₂ desorption mechanism. Mechanistic insight enables 1) rational design 	A BDE = 25.2 $\Delta G (298) = 22.0$ $\Delta G (Et_2O) = 25.6$ $\Delta G (THF) = 29.9$ $K_{eq} = 6.67 \times 10^{-17}$ $K_{eq} (Et_2O) = 1.52 \times 10^{-19}$ $K_{eq} (THF) = 1.14 \times 10^{-22}$	$\begin{array}{c} \textbf{B} \\ \textbf{Me} \\ \textbf{BDE} = 26.2 \\ \Delta G (298) = 23.7 \\ \Delta G (Et_2O) = 27.4 \\ \Delta G (THF) = 31.7 \\ \textbf{K}_{eq} = 4.31 \times 10^{-18} \\ \textbf{K}_{eq} (Et_2O) = 8.33 \times 10^{-21} \\ \textbf{K}_{eq} (THF) = 5.61 \times 10^{-24} \end{array}$	C NH ₂ BDE = 24.4 $\Delta G (298) = 22.2$ $\Delta G (Et_2O) = 26.5$ $\Delta G (THF) = 31.5$ $K_{eq} = 4.95 \times 10^{-17}$ $K_{eq} (Et_2O) = 3.59 \times 10^{-20}$ $K_{eq} (THF) = 7.89 \times 10^{-24}$	$\begin{array}{c} Me \\ & Me \\ & BH_2 \\ BDE = 25.9 \\ \Delta G (298) = 22.6 \\ \Delta G (Et_2O) = 26.6 \\ \Delta G (THF) = 31.3 \\ K_{eq} = 2.82 \times 10^{-17} \\ K_{eq} (Et_2O) = 3.05 \times 10^{-20} \\ K_{eq} (THF) = 1.06 \times 10^{-23} \end{array}$
of new materials and 2) an	$H_3N - BH_3$	MeH_2NBH_3	MeH_2NBH_2Me	$H_3N - BH_2Me$
understanding of how to improve materials properties, e.g., thermal stability.	AB BDE = 27.7 $\Delta G (298) = 17.9$ $\Delta G (Et_2O) = 24.3$ $\Delta G (THF) = 31.7$ $K_{eq} = 7.51 \times 10^{-14}$ $K_{eq} (Et_2O) = 1.52 \times 10^{-18}$	NMeAB BDE = 33.5 $\Delta G (298) = 23.2$ $\Delta G (Et_2O) = 28.9$ $\Delta G (THF) = 35.6$ $K_{eq} = 1.02 \times 10^{-17}$ $K_{eq} (Et_2O) = 6.08 \times 10^{-22}$	NMeBMeAB BDE = 22.5 $\Delta G (298) = 11.5$ $\Delta G (Et_2O) = 16.3$ $\Delta G (THF) = 22.0$ $K_{eq} = 3.92 \times 10^{-9}$ $K_{eq} (Et_2O) = 1.08 \times 10^{-12}$	BMeAB BDE = 28.3 $\Delta G (298) = 16.1$ $\Delta G (Et_2O) = 20.3$ $\Delta G (THF) = 25.3$ $K_{eq} = 1.65 \times 10^{-12}$ $K_{eq} (Et_2O) = 1.23 \times 10^{-15}$
ALABAMA David Dixon	K _{eq} (THF) = 5.44 x 10 ⁻²⁴	K _{eq} (THF) = 7.52 x 10 ⁻²⁷	K _{eq} (THF) = 7.86 x 10 ⁻¹⁷	K _{eq} (THF) = 2.79 x 10 ⁻¹⁹

Mechanism of H₂ Release for AB

Path B (single-step process):

Experimentally, a CBN cyclodiborazane (CDB) dimer was observed by NMR, intercepted, isolated, and shown to be a kinetically and chemically competent intermediate.

H H Me - H H H H H H H H H H H H H H

Accomplishments: Dimer to Trimer (Path C, ²¹ Dissociation First)

Accomplishments: Dimer to Trimer (Path D, ²² Dehydrogenation First)

THE UNIVERSITY OF
ALABAMA∆H(298) in kcal/mol
blue: B3LYP/DZVP2David Dixonblack: G3MP2

Path D involves high-energy transition states highlighted in the red boxes (step 1 and 2) and thus is tentatively disfavored.

Accomplishments: Analysis of Compound E

- first dehydrogenation is predicted to be thermo-neutral in THF. Typically desorption from BN is exothermic.
- first dehydrogenation is predicted to have a low activation barrier, i.e., it should be fast.

Preliminary predictions indicate that compound E has the potential to be reversible.

ACCOMPLISHMENTS: CBN Materials Demonstration Test Results

THE NEXT GENERATION OF PORTABLE POWER.™

Overview

Developed test stand at Protonex to evaluate Compound B

- Provides 10 L of hydride H₂ storage
- 20 min stack operation at nominal conditions

Stand enables operation of small Protonex PEM stack

- 12 cell, 9.5 cm² active area
- Nominal performance:
 - 33 W
 - 4 A, 8.5 V
- Nominal flows:
 - Air: 2.6 sLpm
 - H₂: 0.33 sLpm

Processed 47g of Compound B at Protonex facility to date

- in several batches (in part from regenerated materials)
- Obtained ~23 min of stack operation

Demo Test Setup Purpose: Demonstrate Stable Fuel Cell Operation

Stack Operation on Compound B

Fuel cell operation stable until depletion of the H₂ source.

Lessons Learned

Stable stack operation obtained using Compound B

- Based on formulations to date

Filtering required to remove impurities:

- Activated carbon filter
- Dry ice condenser/trap
- Trace amounts of THF was present in **B** (identified via trapping experiments)
- Other impurities might be present as well?

• H₂ release from Compound B proceeds quickly once activated:

- Majority of H₂ released within 2-3 min of exposure to catalyst at 80 °C
- Reaction completed within 10 min
- Peak H₂ production rates of ~12 sLPM observed

Samples >5g (>2 L H₂) required to assess stack performance

Path Forward and Open Questions

Path forward

- Must reduce solvent/vapor content in Compound B
- Should demonstrate stable stack performance over longer durations to ensure we are not missing a longer term degradation mode

Important questions related to productization:

- What is the estimated cost of production for Compound **B**?
- What is the long term stability of Compound B?
- What are environmental influences?
- What are the hazards of Compound B and its spent fuel? Hazard Class?
 Flash Point? Shipping logistics?
- What is the dependence of decomposition rate on temperature?
- Is the decomposition reaction exothermic? What is the heat of reaction?
- Can Compound B be decomposed in a fixed bed reactor (in a single pass, at high conversion)?
 - Do we need new heterogeneous catalysts?

Collaborations

Project Collaborators / Team Members

ALABAMA

computational studies of H_2 desorption pathways of cyclic CBN materials, evaluation of thermodynamics and energetics, prediction of spectra

experimental mechanistic studies of H_2 absorption/desorption to/from cyclic CBN materials, thermodynamic measurements using reaction calorimetry, H_2 charge/ discharge characteristics, RGA, TGA analysis, powder X-ray diffraction analysis

fuel cell system integration, performance testing of hydrogen storage materials consulting on fuel cell applications and targets for non-automotive systems

Proposed Future Work

Remaining Phase I Work (Phase I ends 9/30/2013):

- synthesize compound E (has the potential to be a reversible system)
- continue to characterize available CBN heterocycle materials and blends to improve storage parameters with the focus on materials that show potential to meet targets for nonautomotive and vehicular applications
- identify additional high-capacity CBN materials and/or blends that have the potential to meet vehicular targets and screen them for desirable thermodynamic and desorption properties using theory
- continue computational investigation of dehydrogenation mechanisms

Phase II Work:

- optimize efficiency of synthesis of best candidate(s), maximize yields, minimize complexity
- scale up preparation of B for fuel cell testing
- test **B** in fuel cells
- test fuel blends in fuel cells
- develop more efficient heterogeneous catalysts for implementation in fixed-bed flow reactors
- utilize pincer-type catalysts to desorb additional H₂ from CBN heterocycle materials (potentially approaching vehicular targets)
- develop solutions to remove impurities from H₂ stream (if needed)

Project Summary

Relevance: development of novel chemical H₂ storage materials that have the potential to enable non-automotive applications and meet the 2017 DOE targets for vehicular applications
 Approach: multi-pronged approach to address diverse potential applications: 1) liquid-phase carriers, 2) on-board reversible materials, 3) high-capacity materials

Progress:

- made 9/12 proposed CBN materials available for analysis
- characterized CBN materials in terms of capacity, melting point, and density
- determined that compound B is likely the only roomtemperature liquid carrier of the proposed materials
- characterized compound B with regard to: viscosity, polarity, enthalpy of H_2 desorption, H_2 stream purity, thermal stability
- characterized properties of fuel blends with B as the "solvent"
- calculated important thermodynamic and kinetic parameters to help develop an understanding of the desorption mechanism
- demonstrated stable fuel cell operation with Compound B

Collaborations: Future Work:

- active partnership with UA, PNNL, and Protonex
- synthesis, including scale up synthesis
- characterization
- mechanistic understanding
- fuel cell testing

Publications and Presentations

- 1) Luo, W.; Neiner, D.; Karkamkar, A.; Parab, K.; Garner, E. B., III.; Dixon, D. A.; Matson, D.; Autrey, S. T.; Liu S.-Y. "3-Methyl-1,2-BN-Cyclopentane: A Promising H2 Storage Material?" Dalton Trans. 2013, 42, 611-614. (publication)
- 2) Recent Advances in Computational Fluorine Chemistry" Invited Plenary Lecture, 21st Winter Fluorine Conference, St. Petersburg FL, January 2013 (D.A. Dixon)
- 3) "Computational Chemistry for Practical Applications," Invited Lecture, 9th Mississippi State UAB Conference on Differential Equations and Computational Simulations, Mississippi State University, Oct. 4-6, 2012. (D. A. Dixon)
- 4) "Developing the Basic Science and Applications of Boron Nitrogen Heterocycles"; Shih-Yuan Liu; Dreyfus Foundation Teacher-Scholar Symposium, New York, NY, October 26, 2012. (Liu).
- 5) "Recent Advances in Azaborine Chemistry"; Queen's University, Kingston, ON, Canada, Seminar, November 2, 2012. (Liu)
- 6) "Recent Advances in Azaborine Chemistry"; Texas A&M University, College Station, TX, Seminar, September 2012. (Liu)
- 7) "A Single-Component Liquid-Phase Hydrogen Storage Material: Synthesis and Catalytic H2 Desorption Studies"; Lisbon, Portugal, 25th International Conference on Organometallic Chemistry (ICOMC-25), September 2012. (Liu)
- 8) "Development of a Single-Component Liquid-Phase Hydrogen Storage Material"; Victoria, BC, Canada, International Symposium on Inorganic Ring Systems (IRIS-13), August 2012. (Liu)
- 9) "Hydrogen Storage Using B-N Heterocycles"; Jacob Ishibashi, Patrick Campbell, Wei Luo, Shih-Yuan Liu; Materials Science Institute Fall Conference, Eugene, OR (2012). (poster)
- 10) "Hydrogen Storage by Novel CBN Heterocycle Materials"; Heidelberg, Germany, International Energy Agency, Hydrogen Implementing Agreement, Task 22 Expert Meeting, May 8, 2012. (Liu)
- 11) "Hydrogen Storage by Novel CBN Heterocycle Materials"; Washington DC, DOE Annual Merit Review, May 17, 2012. (Liu)

Publications and Presentations (Cont'd)

12) "Hydrogen Storage by CBN Heterocycle Materials"; Baltimore, MD, Remsen Symposium May 31, 2012. (Liu)

13) "Hydrogen activation in molecular complexes: Chemical approaches to energy storage using amine boranes: Driving for improvement in chemical hydrides." Plenary presentation at the 2nd Asian Symposium on Hydrogen Storage Materials 2012 in Cheju, South Korea. April 2012. (Autrey)

14) "Hydrogen activation in boron-nitrogen molecular complexes: Chemical approaches to energy storage using amine boranes: The road to reversibility in chemical hydrides." Invited presentation at I2CNER, Kyushu University, Fukuoka, Japan. April 2012. (Autrey)

Technical Backup Slides

Fe-Catalyzed H₂ Release (10 mmol Neat)

Dehydrogenation is feasible at larger scales as a neat liquid (10 mmols).

Wei Luo, Patrick Campbell *J. Am. Chem. Soc.* **2011**, *133*, 19326-9.

Heterogeneous Catalysis

Heterogeneous catalyst is active for consecutive dehydrogenations.

Wei Luo, Patrick Campbell J. Am. Chem. Soc. 2011, 133, 19326-9. (C&EN 2011, November 28, page 35)

Regeneration of Spent Fuel (Preliminary)

Wei Luo, Patrick Campbell *J. Am. Chem. Soc.* 2011, 133, 19326-9. (C&EN 2011, November 28, page 35)

Progress: Characterization of Heterogeneous Fe Catalyst

Heterogeneous catalyst is consistent with Fe(0) particles with 3 nm average size.

Mark Bowden Tom Autrey

Phase I Go-NoGo Criteria

liquid systems	reversible systems	high-capacity
		systems
single component:		<u>materials H, I, J:</u>
• liquid fuel at 0 °C	• $\Delta G = -8$ to +8 kcal/mol	• > 8 wt.%
	(overall)	
• >4.5 wt.%, >40 g H ₂ /L	• $\Delta H = +7$ to +12 kcal/mol H ₂	• T(release) < 150 °C
• >95% fuel purity	• >5.0 wt.%, >40 g H ₂ /L	
• T(release) < 110 °C	• T(release) < 200 °C	
• has a pathway for		
regeneration		
multi component blends:		
• liquid fuel at 0 °C		
• >5.5 wt.%, >50 g H ₂ /L		
• T(release) < 150 °C		

Company Overview

Organization	 Founded in 2000; headquartered in Southborough, MA with 60 employees Exceptional team with deep roots in power management and fuel cell technology
Solution Overview	 Leading provider of 10 - 1000 watt high-performance power solutions Stand alone Power Manager products enable flexibility (Solar, Scavenge, Fuel Cell, etc.) Only fuel cell manufacturer to specialize in both PEM and SOFC designs Over 100 granted and pending patents on key technology and processes
Value Proposition	 Power management products that simplify battery logistics Clean, quiet, efficient and lightweight advanced fuel cell power solutions High-performance and reliable fuel cells for military applications
Customer Traction	 Targeted applications include: field battery charging, unmanned system power, APUs Key strategic partnerships with both military and commercial leaders
Financial Profile	 Accelerating product revenue as products transition from trial to deployment FY2012 revenue over \$10M Major shareholders include Parker Hannifin, Goldman and Conduit Ventures

Compelling Fuel Cell Benefits – Sub-Kilowatt

vs. GENERATORS

- Provides attractive alternative to operating conventional generators or main engines
 - <u>Scalable</u> JP-8 generators under 1kW do not exist
 - Quieter near silent operation
 - 100X quieter than Honda generator
 - Virtually no vibration
 - <u>Lighter</u>
 - Hybridization allows lower power fuel cell
 - More Efficient Less fuel, less waste heat
 - <u>Cleaner</u> low emission profile, minimal odor
 - Enables indoor operation

vs. BATTERIES

- <u>Rechargeables</u> Fuel cell systems complement and extend functionality
 - Hybridized with installed battery systems
 - Clean, quiet duration extension
 - Portable charging method for off-grid batteries
 - <u>Reduces</u> number of batteries required in many applications

Non-Rechargeables will be replaced

by fuel cells in certain military applications

- Duration: 2 to 4x longer
- Mission Weight: 2 to 4x lighter
- Energy Density: superior
- Lower Cost of ownership
- <u>Better Safety Profile</u>

SUB-KILOWATT PORTABLE APPICATIONS ARE AN EXCELLENT FIT FOR FUEL CELLS AND ARE WIDELY EXPECTED TO DEPLOY FIRST