

Composite Technology Development, Inc.

ENGINEERED MATERIAL SOLUTIONS

Optimizing the Cost and Performance of Composite Cylinders for H₂ Storage using a Graded Construction

Principal Investigator: Andrea E. Haight, Ph.D. May 15, 2013

Project ID # ST110

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline	Barriers
 Project Start Date: Feb 2013 Project End Date: Nov 2013 (end of Phase I – further funding TBD at a later date) Percent Complete: 30% 	 Type IV Pressure Vessel Cost Price and availability of low cost carbon fiber Composite properties of lower cost carbon fibers
Budget	Partners

- Hydrogen fuel cell vehicles require on-board H₂ storage systems to support driving distance of >300 miles
 - 5 kg H₂ storage required
 - Requires 700 bar (10,000 psi) storage capability
 - Current Type III and Type IV COPV will not meet long term cost/performance targets*
 - Storage system cost significantly higher than 2017 targets
 - Carbon fiber identified as primary driver of storage system cost

Phase I Goal: Demonstrate technology to reduce cost of Type IV H₂ Storage vessel by 10% with the potential to reach Project Goal of 25%

* "Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications", September 2010, published on the DOE/FCT website: http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/compressedtank_storage.pdf

Relevance – Cost Breakout for Type IV H₂ Storage Systems

Graphic from "Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications", September 2010, published on the DOE/FCT website: http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/compressedtank_storage.pdf

Reducing quantity and cost of carbon fiber represents the best opportunity to reduce Type IV tank cost while maintaining performance properties

Approach – Pressure Vessel Mechanics

- Efficient composite maximizes fiber strain
- 700 Bar tank analyzed as thick walled shell
 - Thickness/radius > 0.1 invalidates uniform hoop stress distribution through wall
 - In thick shell there is a gradation of strain from inner to outer wall
 - The outer fibers are strained 20-30% less than the inner fibers at incipient burst failure

- Thick composite performance also depends on
 - Damage due to microcracking and delamination during hydrostatic pressurization as well as fatigue cycling
 - Understanding and incorporation of progressive failure mechanisms is essential to optimize design

- Carbon fiber is the highest cost component in 700 Bar composite tanks
 - Reducing the cost or quantity of carbon fiber in a tank can yield the biggest savings
- Lower cost carbon fibers tend to have lower strain capabilities than high priced fibers
 - In thick walled shell outer most fibers are stained to lower levels
 - By using a graded composite where high strain fibers are used in the inner portion and lower strain fibers on the outside can reduce tank cost

Graded Composite Structure

Approach – Preliminary Cost Analysis

- Cost reduction potential based on
 - T700S over cost range of \$12-15/Lb
 - ORNL low cost carbon fiber range of \$5-9/Lb
 - Percentage of low cost fibers used in tank wall between 40%-60%
 - Assumed zero mass change relative to current design

Lower Cost Fibers and Graded Composite Can Enable 25% Cost Reduction

Values Calculated using cost breakout from "Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications", September 2010, published on the DOE/FCT website: http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/compressedtank_storage.pdf

- ORNL's textile-PAN or polyolefin based fibers are still in an early stage
 - Material properties have only been explored at the fiber level
- Questions remain regarding possible composite properties
 - Fiber translation in epoxy matrix composites
 - Compatibility with the filament winding process
 - How composite design rules apply
- Develop fiber sizing and epoxy matrices
 to harness the maximum properties of the textile-PAN based carbon fibers
 - Prevent fiber damage during handling and filament winding
 - Damage can reduce burst, fatigue, and stress rupture performance
 - Promotes chemical compatibility and adhesion between the fiber and matrix

thickness

Allowable failure

Provide highly efficient composite with excellent fiber translation at a minimal cost due to grading with low cost fibers through tank thickness

Approach – Composite Manufacturing and Test Coupons

- Processing of materials for program
 - Plate tumble winder
 - Wet winding
 - Unidirectional panels for coupon testing
 - Towpreg
 - Results in more efficient composite
 - Lower weight and less carbon
 - Minimizes fuzzing from low cost fibers
 - Fabricate unidirectional panels for coupon testing
- Coupon Testing
 - Tensile (ASTM D3039)
 - Data for design model
 - Short Beam Shear (ASTM D2344)
 - Some information regarding sizing effects
 - Data to verify/refine design models

Uni and Cross Ply Panel Winding

Approach – Baseline Materials

Material	Description	Comments
Toray T700	Commercial carbon fiber	 Currently used in Type IV tank construction \$15/lb
ORNL Low Cost Carbon Fiber	Non-commercial carbon fiber	 Alternate feedstocks for low cost carbon fiber production Target price point \$5-\$9/lb
Zoltek Panex [®] 35	Commercial low cost carbon fiber	Targeted for automotive applications\$10/lb
Standard Epoxy Sizing	Commercially available	Primarily handling functionSome improvement in wetting/adhesion
CTD Sizing	Reactive sizing	 Improved interlaminar shear properties
Adherent Technologies AT-9307E finish	Reactive finish	 Dramatic improvements in composite strength and environmental durability
CTD-7.1	Toughened epoxy	 Wet winding Used in KIBOKO® linerless composite tanks
CTD-9.1PX	Toughened epoxy	Prepreg resinsSlit tapes used to construct LH2 demonstration tanks

10

Gas Cylinders

Approach – Phase I Schedule

- Preliminary parametric cost analysis performed
- Analysis models are prepared and ready for trade studies of graded construction tanks
- Fabrication of test coupons and testing has commenced
- In process of identifying and acquiring needed materials
 - Carbon fiber
 - Subcontract in place with ORNL for production of low cost carbon fiber
 - Toray T700S fiber with general purpose sizing available in house
 - Zoltek Panex[®] fiber as commercial low cost alternative on order
 - Sizing selection underway
 - Selection of toughened epoxy matrix candidates underway
- Discussions with Luxfer regarding cost analysis and high-rate manufacturing

Collaborations

- CTD: Design trade studies, material trials, product design, and commercialization
 - Dr. Andrea Haight PI, Program Manager, Polymer Chemist
 - 15 years experience in resin and sizing development at CTD and Adherent Technologies
 - Mr. Jacob Barker– Lead Engineer
 - Composite design, process development, and fabrication
 - Mr. Mark Haynes Test Engineer
 - Leads all mechanical and tank testing at CTD
 - Mr. Mike Tupper
 - Composite design and product commercialization
- Oak Ridge National Laboratory (ORNL)
 - Provide non-commercial low-cost carbon fiber for evaluation
- Luxfer Gas Cylinders
 - Aid with cost analysis
 - Explore graded composites for commercial pressure vessels
 - Consider collaborating with CTD to develop low cost 700 Bar tank

Proposed Future Work – Phase II

- Demonstrate performance of a lower cost Type IV pressure vessel using graded composite construction
- Continue material development efforts
 - Further characterize and optimize graded composite construction
 - Fiber sizing and Matrix materials increased focus on towpreg
 - Composite manufacturing
- Fabricate and test pressure vessels made with graded composite
 - CTD to manufacture and test 1.9 liter tanks
 - Large database of information and test data on 1.9 liter tank
 - Work with Luxfer to build and test Type IV tanks
 - Likely Luxfer will initially focus on 3600 psi (248 Bar) CNG tank
 - Strong interest in 700 Bar tanks for hydrogen storage
- Scale up production and secure supply chain
 - Toll manufacturers for sized fibers and matrix materials
 - Consider use of Zoltek fibers, should ORNL fibers not be market ready
 - Prepare marketing plan for tank design and material supply

Project Summary

Relevance	Decrease overall cost of on-board hydrogen storage for fuel cell powered vehicles
Approach	Type IV hydrogen storage tank based on graded composite structure incorporating low cost carbon fibers
Technical Accomplishments & Progress	Preliminary parametric cost analysis performed; analysis models prepared for design trade studies with graded composite construction; coupon fabrication and testing underway
Technology Transfer/ Collaborations	Active collaborations with Oak Ridge National Laboratory (low cost carbon fiber) and Luxfer Gas Cylinders (cost analysis, high rate manufacturing)
Proposed Future Research	Optimization of graded composite tank construction – focus on towpreg-based manufacturing; demonstrate a lower cost Type IV pressure vessel using graded composite construction; work with Luxfer to build and test Type IV tanks

