Hydrogen Recycling System Evaluation and Data Collection Rhonda Staudt H2Pump LLC May 16, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information

TV018

PHONE: 518.783.2241 • EMAIL: INFO@H2PUMPLLC.COM 11 NORTHWAY LANE NORTH LATHAM, NY 12110

Overview

Limited Liability Corporation with headquarters in Latham, NY

- Founded in October of 2005
- Hydrogen reclamation and recycling solutions
- Recipient of R&D awards from the US Department of Energy, US Department of Defense and New York State Energy Research and Development Authority
- InterTech Group is a strategic partner and investor

• 18 employees

Commercial Hydrogen Market

Industrial Processes Using Hydrogen:

- Metals processing (steel, annealing, sintering, brazing)
- Semi-conductor & LED processing
- Ceramics processing
- Chemical by-product H2
- Float glass manufacturing

LED Fabs

3

The Opportunity

Industrial operations flare or vent hydrogen rich furnace exhaust gas into the atmosphere today

H2Pump Core Technology

Utilizing modified fuel cell technology for hydrogen recovery and recycling

Fuel Cell Chemical energy converted directly to electricity

Hydrogen Recycling Electricity utilized to drive separation process

- Purity, pres
 Reliable n
 Ambient p
 Up to 90%
 Leverages
 Eliminates
- Purify, pressurize and "pump" in a single step
 - Reliable non-mechanical process
 - Ambient pressure exhaust gas operation
 - Up to 90% recovery of hydrogen
 - Leverages existing fuel cell supply base
 - Eliminates Oxygen associated failures modes

HRS-100[™]

6

Overview

Timeline

- Project start date: 1/2/13
- Project end date: 6/30/14*
- Percent complete: 15%

* Project continuation and direction determined annually by DOE

Budget

- Total project funding \$1.06M
 - DOE share: \$499K
 - Contractor share: \$567K
- Funding for FY13: \$966K
 - DOE share: \$453K
 - Contractor share: \$514K

Barriers

- TV 3.6D. Lack of Hydrogen Refueling Infrastructure Performance and Availability Data
 - Efficiency: 10 kWhr/kg
 - Availability: 80%
- TV 3.6G. Hydrogen from Renewable Resources

Partners

- NYSERDA & NREL
- Site Hosts:
 - Ulbrich Stainless Steel
 - Pall Corporation
 - Rome Strip Steel
 - SUNY, Albany- College of Nanoscale Sciences and Engineering (CNSE)

Relevance

Objective:

- To *demonstrate* the product readiness and quantify the *benefits* of H2Pump's Hydrogen Recycling System (HRS-100[™]) by *installing and analyzing* the operation of eight precommercial 100 kg per day systems in real world customer locations.
- H2Pump will *install, track and report* multiple field demonstration systems in industrial heat treating, LED Fabs and semi-conductor applications.
- The demonstrations will be used to *develop case studies* and showcase the benefits of the technology to drive market
 adoption.

Relevance

DoE Barrier	Metric	Target 2013- 2014
D Lack of Performance and	 System Efficiency Recycling rate (kg/day) Electrical consumption (kWhr/kg) 	> 80 < 10
Availability Data	Availability %	> 80%
	Annual run time (24/7) - hours	> 7,000
	Mean time between failure - hours	> 1,200
	Stack life time - hours	> 14,000
G. Hydrogen from Renewable Resources	Annual service cost	\$15,000
henewable hesources	Annual projected savings	\$40,000

Plan & Approach

% Complete

Plan & Approach

Site Requirements & Plan Site Visits- Site Requirements Gas Sampling, Single Cell Testing Installation Document - P&ID

System Build & Test Site Prep Build by Contract Manufacturer Debug, Leak Check, Test and Qualification at H2Pump Site Electrical, Internet, Nitrogen, Water and Exhaust

Installation & Commissioning Ship system Locate and Hook-up Training and continuous operation

Data 12- 18 months Collection & NREL detailed analysis Identification of improvements

> Operation, Maintenance

Service calls Service cost MTBF

Task 1.0: Create Data Collection, Monitoring and Reporting Tool and Database

- ✓ Create a Requirements Document
 - Fleet Status
 - Customer Screen •
 - Database
 - Administration
- ✓ Select a supplier
- Access to NREL
 - Stack degradation
 - Efficiency improvements •
 - Sensor elimination •
 - Optimization •

3 Auto ×	Goo: ×	DC8 ×	DC8 ×	🛎 Base 🗙 [http: ×	Welc ×		
$\leftarrow \rightarrow C$	53	=						
🗀 Banking	🗀 H2Pump 🧰 I	Popular <u>8</u> iG	oogle 🧰 Per	sonal 📋 Writi	ng 🗀 Conve	rsions » (Other bookma	arks
ر الم	H2 Pu	mp System Inf	formation Cert	ter			Fleet Statu	s Screen
Add No	Serial Number	Customer	Location	Install Date	Runtime Hour	Kg Pumped	Power (KW)	Denvie De
								(Kg/day
Individu	HRS 100-101	Customer A	Anytown 1	23/012013	4500	14.625	50.41	(Kg/day 66.3
Individu	HRS 100-101 HRS 100-101	Customer A Customer A	Anytown 1 Anytown 1	23/012013 23/012013	4500 4500	14.625 14.625	50.41 50.41	(Kg/day 66.3

23/012013

23/012013

23/012013

23/012013

23/012013

23/012013

23/012013

23/012013

4500

4500

4500

4500

4500

4500

4500

4500

14.625

14.625

14.625

14.625

14.625

14.625

14.625

14.625

50.41

50.41

50.41

50.41

50.41

50.41

50.41

50.41

Anytown 1

HRS 100-101

Update

Customer A

le Rate

66.3

66.3

66.3

66.3

66.3

66.3

66.3

66.3

Site: Ulbrich Specialty Strip Mill- Wallingford, CT

Task 2.0 Ulbrich (System #1)

- Many types of SS foil
- Multiple continuous furnaces
- Varying Oil and CO
- ✓ Site Requirements and Plan
- ✓ System Build, Test, Site Prep
- $\checkmark\,$ Installation and Commissioning

Task 3.0 Ulbrich (System #2)

- ✓ Site Requirements and Plan
- ✓ System Build, Test
- Installation delayed pending #1

Site: Pall Corporation- Cortland, NY

Task 4.0 Pall (System #3)

- Annealing of SS filters
- Two bell furnaces
- Cyclic operation
- ✓ Site Requirements and Plan
- ✓ System Build, Test, Site Prep
- ✓ Installation and Commissioning

Site: Rome Strip Steel- Rome, NY

Task 5.0 Rome (System #4 & #5)

- Integrate 16 bell furnaces
- Varying operation
- High Oil content
- High CO content
- Dual HRS-100[™] units
- ✓ Site Requirements and Plan
- ✓ System Build, Test, Site Prep
- ✓ Installation and Commissioning

Proposed Future Work

April 2013- Go/ No Go Decision Meeting, Database On-line

April 2013- Complete Site Plan and Install- CNSE- MOCVD

May 2013- Complete Site Plan and Install at CNSE- EUV

June 2013- Complete Site Plan and Install at Site TBD

Quarterly data reviews with NREL

Collaborations

NREL- Data Analysis

NYSERDA- NYS Demo Cost share

NYS Engineering Firms- Hesnor Engineering, Zeller Corporation, O'Brien and Gere and Edwards Vacuum

Site Hosts (Industry)- Ulbrich, Pall, Rome Strip Steel, CNSE

Summary

Four of eight installs completed in 1Q13

Database and reporting tool complete by April 2013

Remaining installs complete in 2Q13

Operation and maintenance thru 2013 and 2014

