2013 DoE Hydrogen and Fuel Cells Program Review

Validation of an Advanced High Pressure PEM Electrolyzer and Composite Hydrogen Storage, with Data Reporting, for SunHydro Stations

Larry Moulthrop

Principle Investigator

5/16/2013

2:45:00 PM

Crystal City Marriott

Project ID # TV020

Overview

Ti	m	\wedge	In	
		CI		
				_

Targets/Barriers

Project start date: Dec 2012

Project end date: Sep 2015

Percent complete: 12%

Budget / Funding

\$ 1,400,000 total DoE share

\$ 1,420,397 total cost share

FY12 Funding: \$ 0

FY13 Funding: \$1,196,763

• \$2.00-\$4.00/gge (2007\$)

Hydrogen Storage

Codes and Standards

Lack of current H₂
 Refueling Infrastructure
 Performance and
 Availability Data

Proton's Partners / Collaborators / Interactors

Air Products & Chemicals - Composite Storage / control - Supplier SunHydro LLC - Fueling Stations - Collaborator

Toyota Motor Sales - FCHV Vehicles - Interactor

Relevance

Target / Barriers Proton team Project Goals

\$2.00-\$4.00/gge

Advanced PEM MEAs: (SH#1) Save Up to 8 kWh/kg H₂ - Ph. 2 Go/No-go

- > 57 bar H₂, ambient O₂
- ➤ In full-scale 65 cell stack, electrolyzer Compared to commercial 30 bar PEM

Adv. 57 bar PEM water electrolyzer (SH#1) Save up to 3.6 kWh/kg H₂ - Ph. 2 Go/No-go

- H₂ gas drying purge loss
- Station mechanical compression to 70MPa Compared to 30 bar H₂ supply

Hydrogen Storage

Adv. composite H2 storage (SH#1 and #2) Double useable storage per unit volume

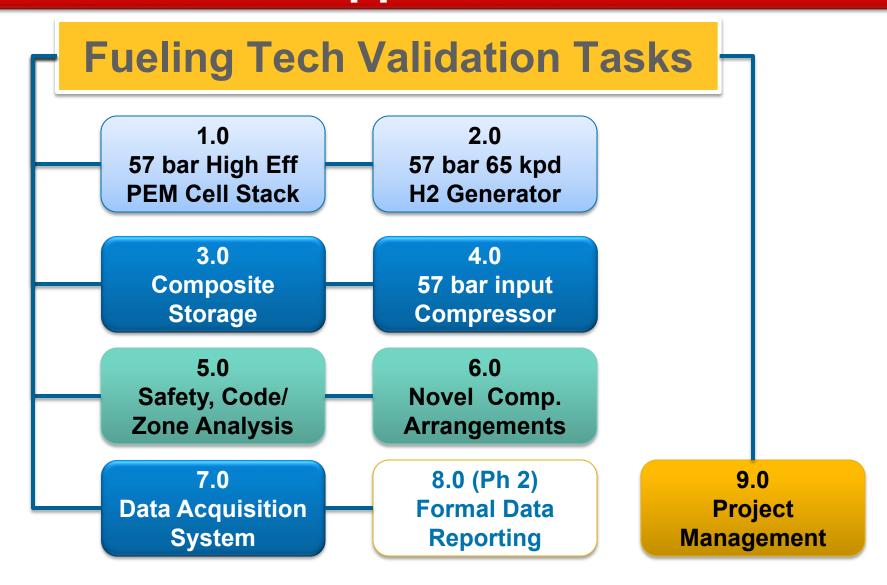
Cycle from 28 to 87MPa Compared to first generation storage tubes

Relevance

Target / Barriers Proton team Project Goals

Codes and **Standards**

Compact Component Arrangements: Fit SH#2 station within 12m ISO container


- Safety and NFPA 2 code analysis
- Novel component arrangements
- Classified, non-classified zones
- ➤ Cooling, power, CSD, H₂ generation Speed AHJ approval, reduce install cost

Lack of H₂ Refueling Infrastructure Performance and **Availability Data**

Collect and report SH station performance Validate advanced technologies reliability

- SunHydro #1 station, SunHydro #2 station
- Energy use, # fills, kg dispensed, capacity
- Maintenance type and frequency, issues
- "%Uptime", any safety or customer issues Up to 24 months of station data

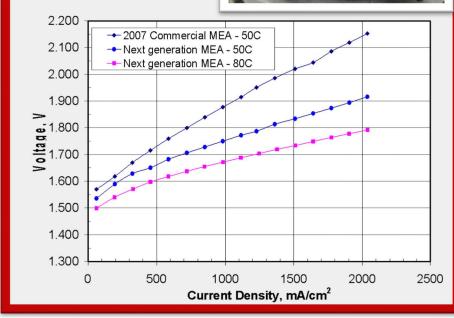
1.0 57 bar High Eff PEM Cell Stack

Build adv. full-scale 65 cell stack

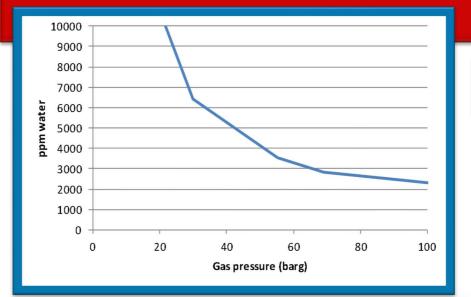
- advanced thinner PEM membrane
- advanced screened electrodes
- 57 bar mechanical design latest production methods (from subscale)

Validate mechanical integrity

57 bar H₂ operating; 1.5x proof


Validate voltage reduction

< 2.1, goal of 1.85 v/cell


Goal: up to 8 kWh/kg H₂ savings vs. 30 bar commercial model

2.0 57 bar, 65 kg/d H2 Generator

Build 30 bar baseline generator

- At SunHydro #1Upgrade H2 gas components
- 30 bar to 57 bar, 1.5x proof
 Make 65 kg H2/day at 57 bar
- Three (3) 57 bar cell stacks
 - Advanced cell stack
 - Two older 57 bar stacks

Goal: Approach 50% less purge loss* with 57 bar generation vs. 30 bar operation

* Swing bed regeneration

3.0 Composite Storage

- Upgrade/new storage systems, SunHydro#1 and #2
 - SunHydro#1 : add 3 new 280 / 870 bar
 H2 composite storage tubes to 6
 existing 630 to 870 bar tanks
 - new installation for SunHydro#2
- Validate 280 870 bar operation, SunHydro#1 and #2

Goal: SunHydro#1 dispensing capacity increase ~16 kg/hr to about 30 kg/hr, with only 50% increase in tubes

Electrolysis System Energy Use 65 60 60 H2 Drying Compression Generation 35 70 166 Final Pressure (barg)

Approach

4.0 57 bar input Compressor

Perform differential compressor comparison

- Adjust SunHydro#1 compressor to accept 57 bar input
- 57 bar input to 30 bar on SunHydro#1 and #2

Goal: kWh/kg reduction

Goal: kg/h increase

SunHydro#1 mechanical compressor can accept input from 21 to 57 bar, while SunHydro#2 is a 30 bar input model

5.0 Safety, Code/ Zone Analysis

- Review/update hazard evaluations for station upgrades
- Author safety operations plan
- Diagram EX zone reduction using code-informed compact component arrangements
- Participate in NFPA 2 revisions

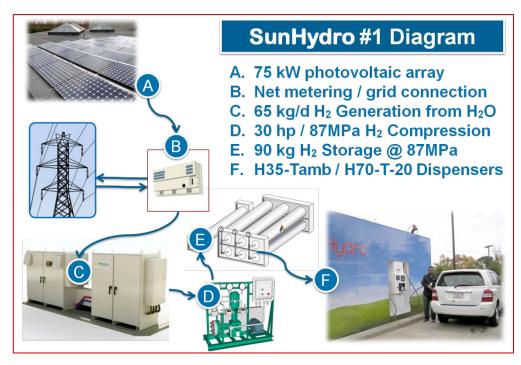
6.0 **Novel Comp. Arrangements**

- Non-EX electrolyzer adjacent to EXrated CSD, in 12m ISO container
- Lightweight 2 h firewalls to demise
- Power, control, thermal in non-EX

Goal: 12m station package, reliable, maintainable, permitted

Individual site summary

- Survey station information
- Dimensional layout, simple process flow diagram


Data collection plan

- Existing data acquisition identify gaps
- Modifications and additions

Station instrumentation install, SH#1, SH#2

 Monitor specific loads and operational status of each H₂ production, compression, storage, dispensing subsystem

7.0 Data Acquisition System

Report collected SH#1 and #2 Station data using H₂ Refueling Station Templates to Hydrogen Secure Data Center at NREL.

Quarterly reports: (up to 24 months)

- H₂: kg produced, stored, dispensed, SAE J2719 quality, and costs
- Energy: kWh/kg for production, compression, dispensing
- Station reliability, maintenance, repairs, service data, and costs
- Station Safety incidents, near misses and hydrogen leaks

Accomplishments and Progress

task	Description	Mar 2013 Progress			
1	57 bar High Eff PEM Stack	Materials ordered for Aug 2013 assembly New MEA Tooling ordered			
2	57 bar 65 kg/d H ₂ Generator	Baseline Generator built 57 bar upgrade in process			
3	Composite Storage	Storage ordered for Sep 2013 commissioning Construction planning underway			
4	57 bar input Compressor	Compressor design confirmed for 57 bar			

- Long lead materials and services ordered
- Build, test during 2Q,3Q 2013

Accomplishments and Progress

task	Description	Mar 2013 Progress			
5	Safety, Code/ Zone Analysis	NFPA 2 revisions underway			
6	Novel Comp. Arrangements	Design in process for SunHydro#2 arrangements			
7	Data Acquisition System	Data survey , simple diagram Ordered software changes to stations			
8	Formal Data Reporting	Contingent on Phase 2 Go/No Go Expect data activity to start in 3Q			

- Station analysis and novel design underway
- Data Acquisition planning underway
- Anticipate Go/No-go Phase 2 in 3Q

Collaborations

SunHydro LLC - Fueling Stations

- Owner of SunHydro#1 station in Wallingford CT and SunHydro#2 station in Braintree MA
- Cost share provider

Toyota Motor Sales - FCHV Vehicles

- TOYOTA

 Provides 10 FCHV-adv cars used at SH#1 and #2
 - No cost lease with SunHydro LLC

Air Products & Chemicals – Storage/control

- Supplier of advanced storage, commissioning
- Supplier of programming and dispensing data services

Future Work

Balance Phase 1 Major Activity

```
Adv. Cell stack MEA tooling testing
2Q
2Q
      Modifications for 57 bar to baseline Generator
3Q
      Advanced PEM stack build, test *
      57 bar PEM water electrolyzer build, test *
3Q
2-3Q
      Station analysis and novel design
2-3Q
      Data Acquisition design and installation
3-4Q
      SunHydro#1 storage commission, compressor test
3-4Q
      SunHydro#2 arrangements, permitted, commissioned
     *Adv stack, 57 bar system eff. Go/No-go Phase 2
```

Phase 2 Major Activity

4Q-1Q, onward Station Data Acquisition

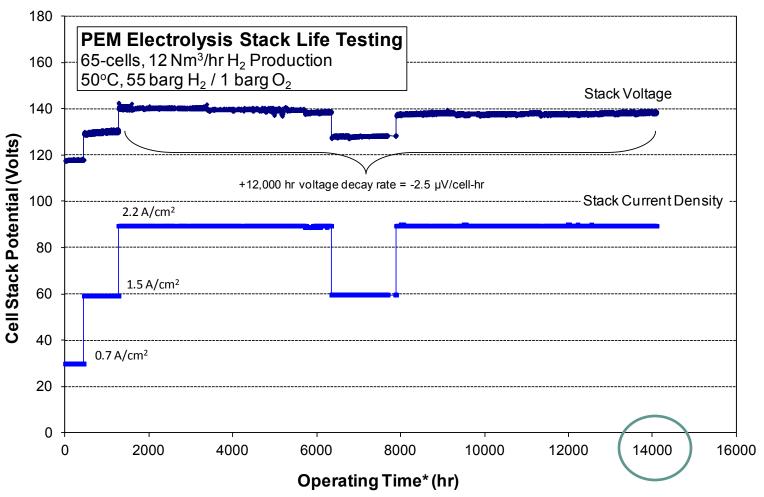
Technical Task Schedule

	Took Name	Start	Finial	2012 2013				
ΙD	ID Task Name		Finish -	Q4	Q1	Q2	Q3	Q4
1	1.0 Adv. 57bar Stack V&V	2/15/2013	7/15/2013	3				
2	2.0 Electrolyzer 57bar 65kpd V&V	12/3/2012	7/26/2013					
3	3.0 Composite storage V&V	3/1/2013	9/13/2013					
4	4.0 Compressor Eff./Throughput 57bar	10/1/2013	10/28/2013				4	
5	Order Composite storage	3/27/2013	3/28/2013		1			
6	6 Commission Upgraded SH#1		9/20/2013				1	
7	7 5.0 Safety Code/Zone Analysis		8/30/2013					
8	8 6.0 Novel Component Arrangements		9/27/2013					
9	Commission SH#2	10/15/2013	10/15/2013					1
10	7.0 Data Acquisition Design/Install	3/15/2013	9/13/2013					
11	SH#1 DAQ install and test		6/14/2013					
12	SH#2 DAQ install and test		9/13/2013					
13	8.0 Formal Station Data Reporting		9/30/2015					

Project Summary

- Relevance: Addresses DoE goal of <\$4/gge, MYPP barriers of H₂ storage, codes, and lack of station performance data
- Approach: Validate H₂ fueling infrastructure performance gains of an adv. 57bar PEM water electrolyzer, next-generation 87MPa composite storage tanks, and skid-mounted compact refueling component arrangements with an updated SunHydro#1 station and a fully containerized SunHydro#2 station. Data reporting to 24 months both SunHydro stations with adv. components.
- <u>Tech Accomplishments</u>: Baseline PEM electrolyzer built; cell stack long lead items ordered; SunHydro#1 and #2 advance storage ordered; SH#2 arrangements underway; SH#1 diagrammed
- <u>Collaborations</u>: SunHydro LLC (stations), Toyota Motors (vehicles), APCI (supplier storage upgrade and programming)
- <u>Future Work</u>: Perform adv. PEM stack build and test; 57bar electrolyzer upgrade, SH#1 storage upgrade, compressor test, SH#2 arrangement, data plan/instrumentation, data reports
- Larry Moulthrop 203-678-2188 LMoulthrop@ Proton OnSite.com

Technical Back-Up Slides


Proton® C Series PEM Electrolysis Stack

- 10 Nm³/hr stack for Navy Life Support Application in 2008
 - 57 bar H₂ differential pressure
 - Over 1 million cell-hrs of validation
 - Currently in serial production
 - Over 18 months on-board submarines
- Derivative 30 bar version in 2009
 - Basis of C-Series 30 Nm³/hr commercial product design
 - Over 1.5 Million cell-hrs of customer field experience to date

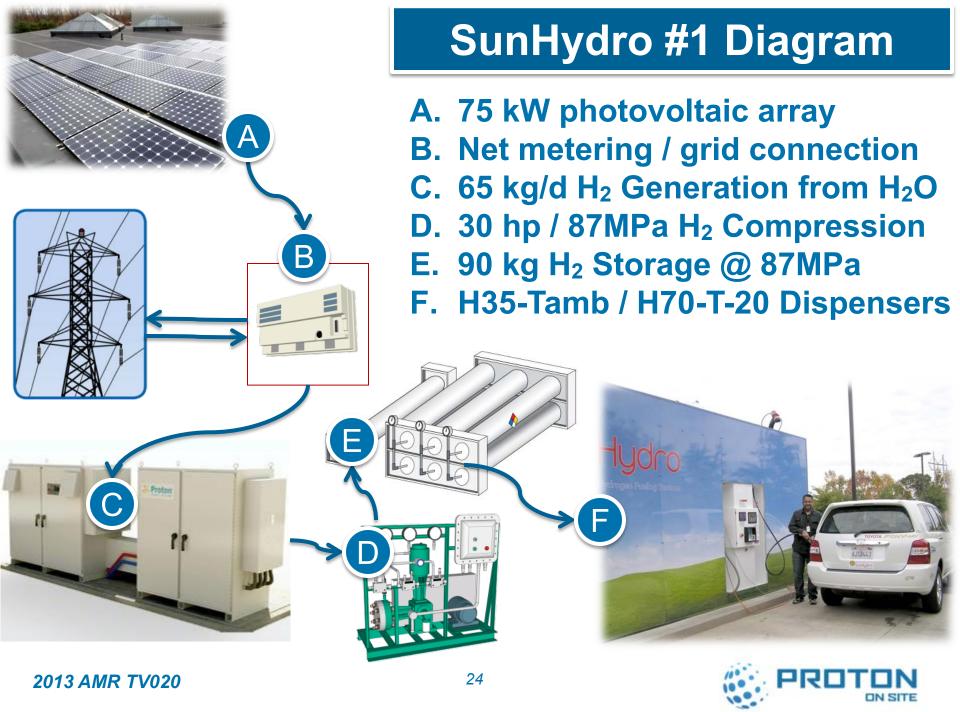
PEM Electrolysis Life Testing – 'Mature'

*Note: Non-operating time and restarts removed from graph

SunHydro #1 Operations

Hydrogen VIO
Primar Is Provide

Signature


S

Jan 2011 – Mar 2013

~5800 kg of hydrogen dispensed ~1500 high pressure H2 fills Serving fleet of 10 FCHV and paratransit

SunHydro #2 Package Concept

- Total system in site-ready shipping container
- Aids serial manufacture, ease of deployment

40 ft (12.2 m)

Challenge: meet Code electrical clearances and performance with compact, practical arrangement

Plan: SunHydro commissions station Fall 2013

