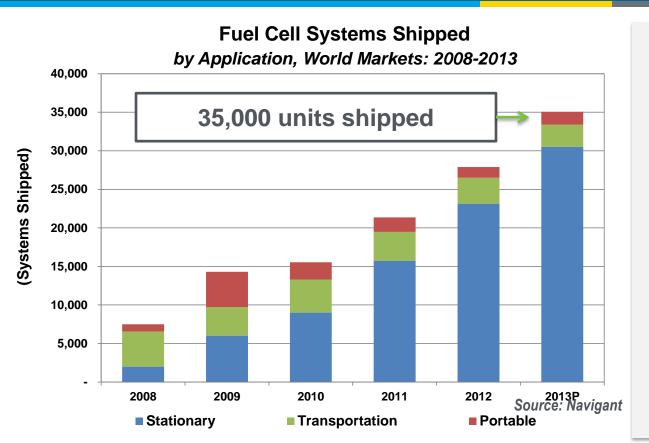
U.S. Department of Energy Hydrogen & Fuel Cells Program

Energy Efficiency & Renewable Energy

Annual Merit Review and Peer Evaluation Meeting


June 2014

Dr. Sunita Satyapal

Director Fuel Cell Technologies Office U.S. Department of Energy

Fuel Cell Market

Energy Efficiency & Renewable Energy

Market Growth

Fuel cell markets continue to grow

U.S. DEPARTMENT OF

ENERGY

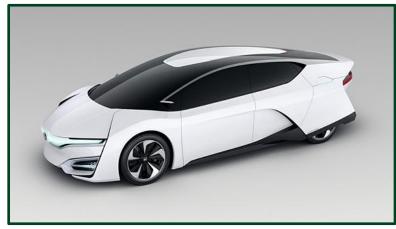
- >25% increase in global MWs shipped since 2012
- 35% increase in revenues from fuel cell systems shipped over last year
- Consistent ~30%
 annual growth in
 global systems
 shipped since 2010.

DOE Funded Reports

The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings State of the States 2013: Fuel Cells in America

2012 Fuel Cell Technologies Office Market Report

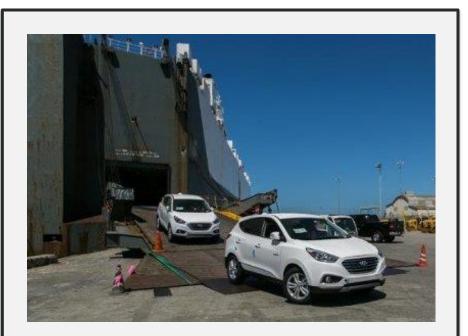
http://energy.gov/eere/fuelcells/market-analysis-reports



Fuel Cell Cars are Here!

U.S. DEPARTMENT OF EN

Energy Efficiency & Renewable Energy


FCEVs on display at North American auto shows.

Honda Fuel Cell Electric Vehicle

Toyota Fuel Cell Electric Vehicle

Hyundai's first mass-produced Tucson Fuel Cell SUVs arrive in Southern California May 20, 2014

Lease includes free H₂ and maintenance.

DOE and Industry-Launched **Public-Private Partnership**

Mission: To promote the commercial introduction and widespread adoption of FCEVs across America through creation of a public-private partnership to overcome the hurdle of establishing hydrogen infrastructure. U.S. DEPARTMENT OF

Current partners include (additional in process):

Established H₂FIRST Project–H₂ Fueling Infrastructure Research & Station Technology

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

NREL and SNL Provide:

- <u>Technical expertise</u> Hydrogen specific materials and systems
- <u>Facilities</u> for technical collaboration and validation
- <u>Objectivity</u> Independent and objective assessment

Hydrogen Fueling Infrastructure Research and Station Technology

Leverage DOE National Lab Network

Project Teams:

in support of H₂USA

- Station Qualification
- Dispenser
 Components
 Research
- Fuel Quality Sensor
- Station Component RD&D
- Reference Station
 Design

Key Collaborations & Partnerships

ENERGY Energy Eff

Energy Efficiency & Renewable Energy

R&D

Demonstration & Deployment

DRIVING RESEARCH AND INNOVATION FOR VEHICLE EFFICIENCY AND ENERGY SUSTAINABILITY

Precompetitive R&D

 USCAR, energy companies, EPRI, utilities

- Implementing Agreements
 - Advanced Fuel Cells
 - Hydrogen

 Auto OEMs, energy companies, government, fuel cell companies

Other State Partnerships

Government, business, academia

- South Carolina (SCHFCA)
- CT, MA (e.g.,CCAT, H2-Fuel Cell Coalition)
- Hawaii (Hawaii Hydrogen Initiative, H2I)

Hydrogen Fueling Infrastructure Research and Station Technology National lab led activities with industry

(SNL & NREL led project)

Enabling

Commercialization

Government partnership

Coordination on policy, lessons learned, accelerating commercialization

- 17 countries & the European Commission

H₂USA

Public-private partnership

~30 partners including global OEMs, H₂ providers, etc.

U.S. DEPARTMENT OF

EERE Funding (\$ in thousands)				
	FY 2014	FY 2015		
Key Activity	Enacted	Request		
Fuel Cell R&D	33,383	33,000		
Hydrogen Fuel R&D ¹	36,545	36,283		
Manufacturing R&D	3,000	3,000		
Systems Analysis	3,000	3,000		
Technology Validation	6,000	6,000		
Safety, Codes and Standards	7,000	7,000		
Market Transformation	3,000	3,000		
NREL Site-wide Facilities Support	1,000	1,700		
Total	\$92,928	\$92,983		

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D ²Hydrogen and Fuel Cell related funding finalized end of FY14

	FY 2014
Basic Science ²	~\$25M
Fossil Energy, SECA	~\$25M
ARPA-E (planned)	~\$30M

FY14 DOE Total: >\$170M

FCTO Incubator FOA, \$4.6M Concept papers due 7/7/14

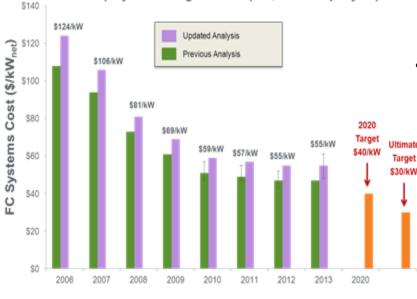
Key Targets

Fuel Cells: *Automotive:* \$40/kW, 5000 hours by 2020, ultimate \$30/kW

Stationary: \$1,000/kW (natural gas), \$1,500/kW (biogas), 80,000 hrs

Hydrogen cost: <\$4/gge by 2020

Major Technical Areas



Fuel Cell R&D

Accomplishments

- Revised automotive fuel cell cost analysis with updated system and Pt price. >30% cost reduction since
 2008.
- Achieved >2x increase in fuel cell catalyst specific power from 2.8 kW/g_{PGM} (2008) to 6.0 kW/g_{PGM}. (3M)
- Developed new nanoframe catalysts with mass activity
 >30X vs Pt/C in RDE testing. (ANL, LBNL)

Projected Transportation Fuel Cell System Cost -projected to high-volume (500,000 units per year)-

ENERGY Energy Efficiency & Renewable Energy

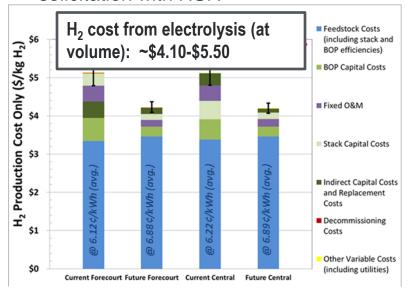
Future Directions

- Reduce cost and enhance performance and durability of fuel cell stack components to meet 2020 targets
 - Catalysts, membranes, and MEAs
- Consortium approach to address non-PGM catalysts, interfaces, MEAs
 - Modeling & combinatorial approaches (aligned w/ Materials Genome Initiative)

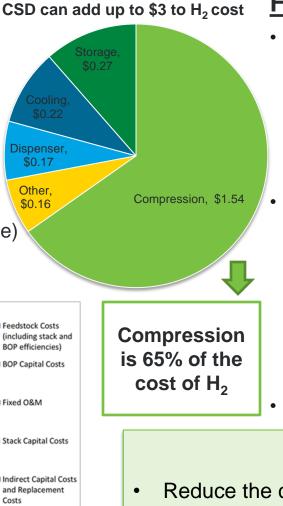
Presolicitation Workshop 6/16 @ 6PM

Status

- Cost: ~\$55/kW (500K/yr);
 ~\$280/kW (20K/yr)
- Durability: 3,600 hours (lab data)
- Catalyst specific power: 6.0 kW/g_{PGM}


FY 2015 Goal

 Improve fuel cell catalyst specific power to 6.6 kW/g_{PGM}, on track to achieve: 8 kW/g PGM, \$40/kW and 5,000 hr durability by 2020

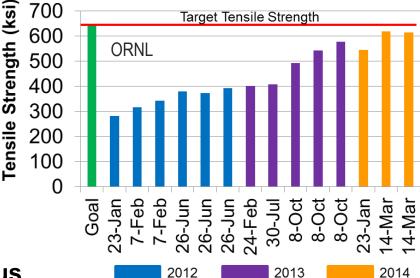

Hydrogen Production & Delivery R&D

Accomplishments

- ≥10X reduction in electrolyzer PGM loading.
- Enhanced stability of III-V PEC devices (1.7X improvement in photocurrent density).
- Developed innovative refueling concept to reduce station cost 50% (compared to 2013 baseline)
- Four Workshops and a joint solicitation with NSF.

http://www.hydrogen.energy.gov/pdfs/h2a_pem_electrolysis_case_study_documentation.pdf

Future Directions


- RD&D on:
 - New components for 700 bar fueling
 - Low-carbon, near-term hydrogen production, and integrated solar water splitting systems
 - Continued Analysis of Production & Delivery Pathways
 - Fermentative H₂ Production
 - High Temperature Electrolysis
 - Cost of Early Market P&D
 - Release new 2014 version of HDSAM
 - 10 new awards in P&D! (see backup)

FY 2015 Goals

- Reduce the cost of H₂ from renewables to \$6.80/gge from \$8.00/gge (2011, dispensed, untaxed)
- Demonstrate PEC with >15% efficiency vs. 2011 baseline of 12%

Accomplishments

- 6 new awards and \$7M announced for advanced storage systems.
 Materia, PPG Industries, SNL, LLNL, Ardica, HRL
- Developed textile PAN fibers at ~25% lower cost than conventional PAN precursor. (ORNL)
- Two sorbent system prototypes in Phase 3 with the Engineering Center to demonstrate performance against targets (see below).

Yield Strength Progression

ENERGY Energy Efficiency & Renewable Energy

Future Directions

- Develop advanced hydrogen storage materials, guided by material property requirements established by Engineering Center.
- Develop storage
 technologies for early
 markets (e.g., forklifts).
- Validate low cost carbon fiber precursors.

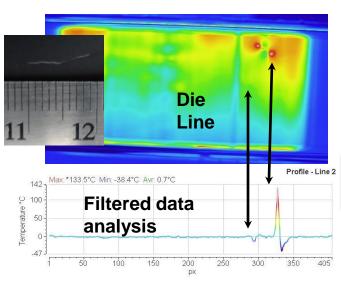
FY 2015 Goals

- Complete sorbent system prototypes and validate Engineering system models
- Reduce the cost of 700-bar H₂ storage systems by 15% from 2013 baseline projection of \$17/kWh

Status		atus 2012	
Projected H ₂ Storage System Performance Current Status	Gravimetric kWh/kg	Volumetric kWh/L	Costs* \$/kWh
700 bar compressed (Type IV)	1.5	0.8	17
350 bar compressed (Type IV)	1.8	0.6	13
Sorbent (MOF-5,100bar MATI, LN2)	1.1	0.7	16
Hexcell, flow-through cooling	1.2	0.6	13
2017 Target	1.8	1.3	12

11 | Fuel Cell Technologies Office

Manufacturing R&D



Accomplishments

- Achieved 25% 3-layer MEA cost reduction (WL Gore)
- Achieved ~30% composite mass reduction & ~20% cost savings over 2013 baseline hydrogen storage tank (Quantum)
- Held EERE/CEMI Quality Control Workshop (Co-sponsored by FCTO, AMO, SETO, VTO, & BTO); identified gaps and opportunities (CEMI: Clean Energy Manufacturing Initiative)

 Report Online: <u>http://energy.gov/eere/fuelcells/eere-guality-control-workshop</u>

Future Directions

- Funding Opportunity Announcement released on 5/20/14 (up to \$2M DOE)
 - -<u>Topic 1</u>: Supply chain outreach and development
 - <u>Topic 2</u>: Global manufacturing competitiveness analysis

Deadline: 6/30/2014

Status

- Inline membrane defect detection using IR/DC demonstrated (Ion Power/NREL), defects detected at 60 ft/min (NREL)
- GDL cost of \$1.37/kW (projected for high volume manufacturing 500K/yr (Ballard)

FY 2015 Goals

- Demonstrate 3X increase of continuous in-line measurement processes to achieve 100 ft/min for MEA/component roll-to-roll processing
- Conduct supply chain analysis

Technology Validation & Market Transformation

Accomplishments

- Fuel cell bus fuel economies up to 2X better than 2008 baseline. Best durability near 2016 target (18,000 hrs).
- Awarded FCEV data collection projects to 6 OEMs (~90 vehicles; up to 235,000 mi anticipated).
- 2 new projects on fuel cell hybrid electric medium-duty trucks.
- Designed and built fuel cell system for airport ground support vehicle
- Developed prototype design for fuel cell power system for pier-side and auxiliary sea vessel power (w/ MARAD)
- Demonstrated landfill gas to H₂

Mercedes-Benz

HONDA

NISSAN GROUP OF NORTH AMERICA

τογοτα

Future Directions

- Validate hydrogen refueling station/components and wind to H₂/energy storage systems
- Accelerate H₂FIRST project
- Test light duty battery electric fuel cell hybrid range extender and develop fleet strategies
- RFI planned for fuel cell range extender

FY 2015 Goals

- Validate next generation FCEV and truck performance (e.g., parcel delivery vans with >100 mi range)
- Enable a 5X increase in the number of installed fuel cells vs. 2012 baseline
- Complete marine power and refrigerated truck APU demos

Status

- FCEVs achieved 59% efficiency (target 60%);
 3.5 million miles driven
- Commercial power systems demonstrated durability between 40,000-80,000 hours
- 1,600 DOE-supported MHE & BUP fuel cells resulted in >11,500 units with no DOE funding

Safety, Codes and Standards

Accomplishments

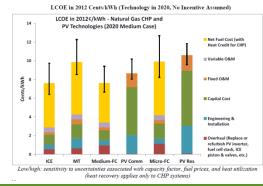
- Global Technical Regulatior adopted by UN Economic Commission for Europe Working Party 29 (US DOT NHTSA)
- Published report on SCS impact on station footprint (SNL)
- >900 downloads of Hydrogen Tools App covering 5 regions (PNNL)

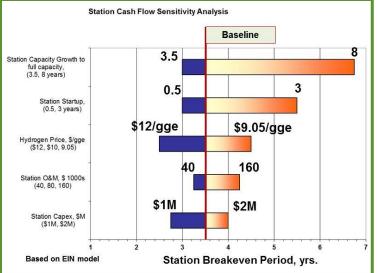
Future Directions

- Quantify impact of liquid hydrogen release to reduce separation distances
- Develop hydrogen fueling station template (includes necessary safety codes & standards)
- Coordinate with State of California (e.g., CEC, CARB) to accelerate station deployment

Status

- Close to 30,000 code officials and first responders trained (NREL, PNNL)
- Assessed number of stations that can accept and deliver hydrogen (20% of 70 stations)
- H₂ Safety Panel reviewed 395 projects


FY 2015 Goals


- Initiate liquid hydrogen release studies
- Implement First Responder National Hydrogen Response Education Program
- Continued support of H₂USA and Market Support and Acceleration Working group

Systems Analysis

Accomplishments

- Analyzed future Pt requirements for ICEVs.
- Analyzed comparative LCOE for stationary PEM fuel cells.
 - 7 to 9¢/kWh competitive with solar PV and other CHP technologies.
- 8-13% potential cost improvement from improved fuel cell efficiency through R&D.
- Analyzed sensitivity of hydrogen infrastructure cost drivers.

ENERGY Energy Efficiency & Renewable Energy

Future Directions

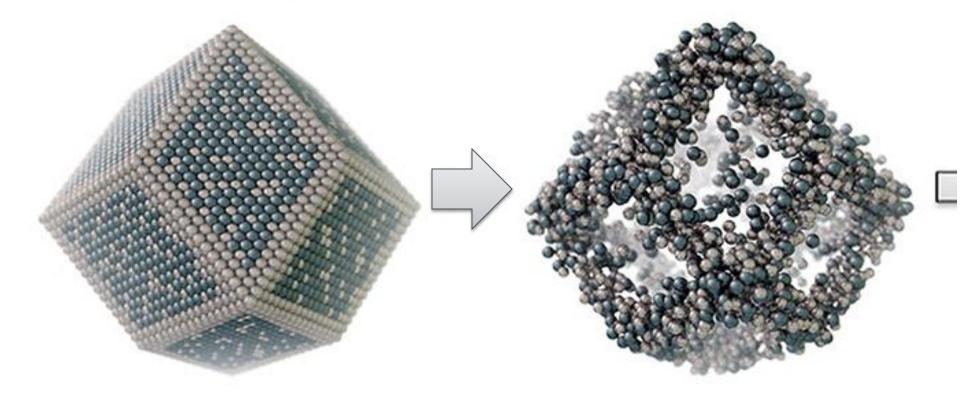
- Develop interim hydrogen cost target.
- Continue life-cycle analysis of GHG, petroleum use and water for pathways.
- Assess gaps and drivers for early market infrastructure cost.
- Evaluate the use of hydrogen for energy storage.
- Issue RFI on hGallon. hGallon equates cost of hydrogen and gasoline.

Status

- Completed JOBS H₂ model; ~1300 jobs ('job-years') created/retained (ARRA)
- Completed fact sheets for analysis models

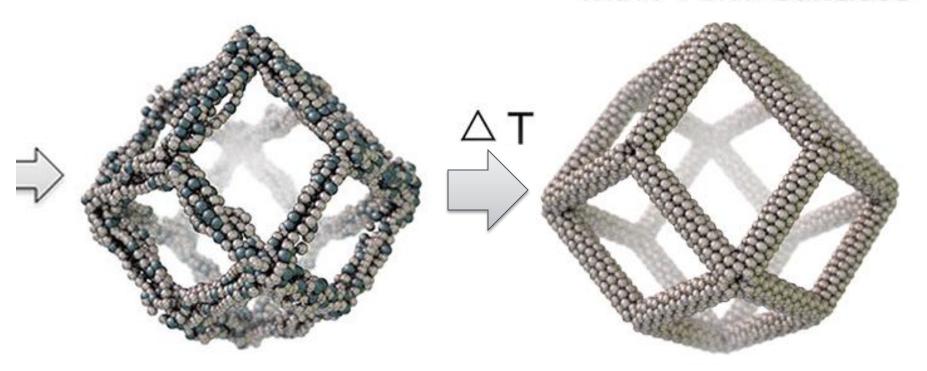
FY 2015 Goals

- Continue analyses to guide R&D
- Infrastructure cost and financing scenario analysis.


Highlights

New nanoframe catalysts developed with mass activity >30X higher than Pt/C catalysts in RDE testing (BES-EERE collaboration)

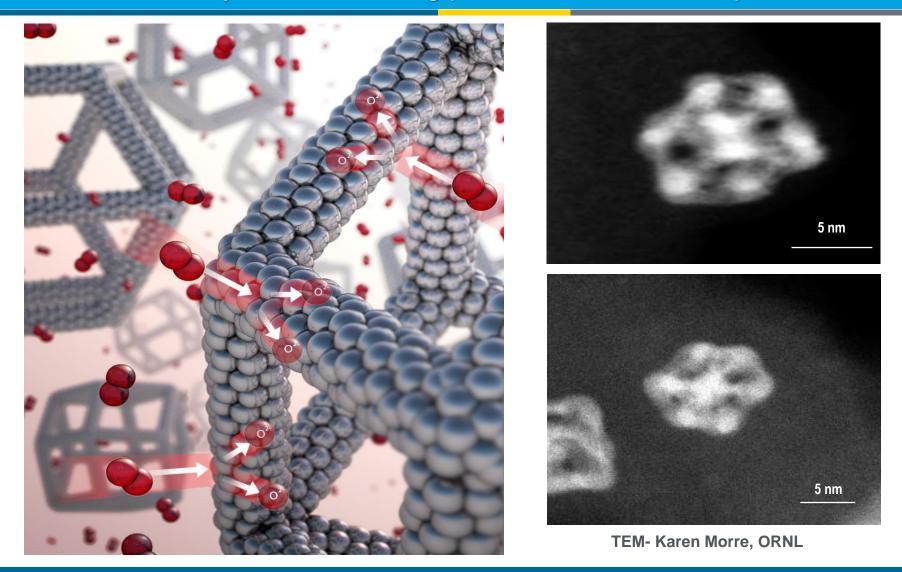
A PtNi₃ Polyhedra B PtNi Intermediates



Energy Efficiency & Renewable Energy

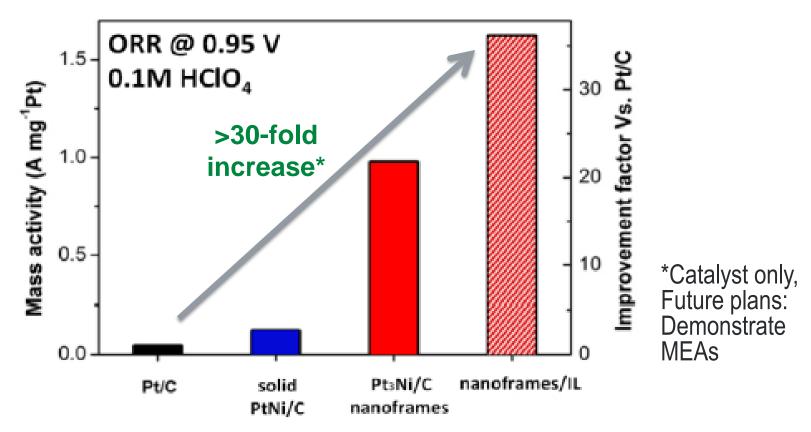
New nanoframe catalysts developed with mass activity >30X higher than Pt/C catalysts in RDE testing (BES-EERE collaboration)

C Pt₃Ni Nanoframes D Pt₃Ni nanoframes/C with Pt-skin surfaces


Dispersible cathode catalyst with extended thin film catalyst properties

Synthesis & Evaluation of Nanoframes

Energy Efficiency & Renewable Energy


New nanoframe catalysts developed with mass activity >30X higher than Pt/C catalysts in RDE testing (BES-EERE collaboration)

Energy Efficiency & Renewable Energy

New nanoframe catalysts developed with mass activity >30X higher than Pt/C catalysts in RDE testing (BES-EERE collaboration)

 "Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces"
 Vojislav Stamenkovic (ANL) & Peidong Yang (LBNL/UCB) Science, 343 (2014) 1339

Infrastructure Status – California

U.S. DEPARTMENT OF ENERGY

Source

Electrolyzer &

SOFC – biogas

Liquid truck

conversion

SMR

Energy Efficiency & Renewable Energy

Capacity

108 kg/day

60 kg/day

100 kg/day

- > 10 public stations operating in CA
- 46 stations in development
 - \$46.6 million announced for 28 new H₂ refueling stations
 - > 13 in Northern CA
 - > 15 in Southern CA

Station

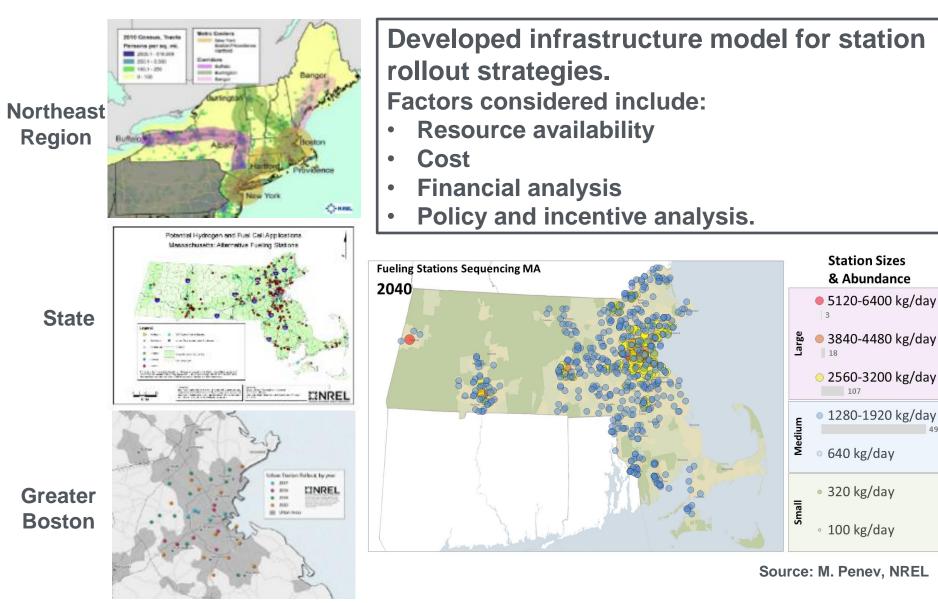
Emmeryville/ AC

Fountain Valley

Burbank

transit

Type

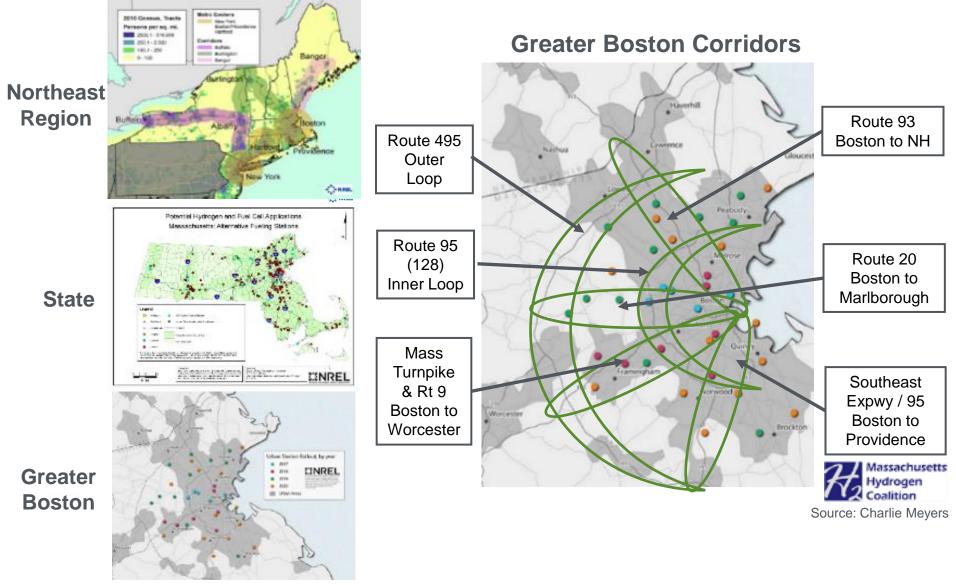

Liauid

Gaseous

Gaseous

Gaseous &

U.S. DEPARTMENT OF



Maps shown are draft and intended for discussion locating fleets and siting hydrogen locations.

Infrastructure Scenarios - Northeast

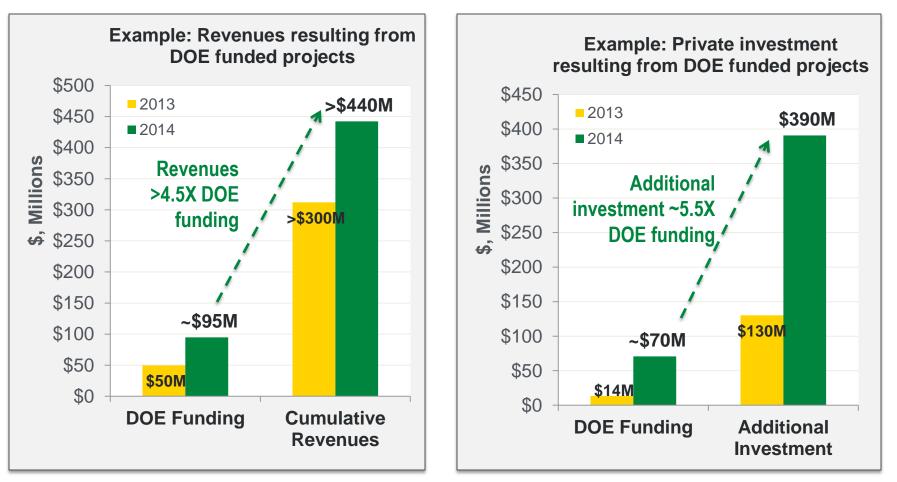
U.S. DEPARTMENT OF ENERGY Re

Energy Efficiency & Renewable Energy

Maps shown are draft and intended for discussion locating fleets and siting hydrogen locations.

> Credible and reliable safety information from a trustworthy source

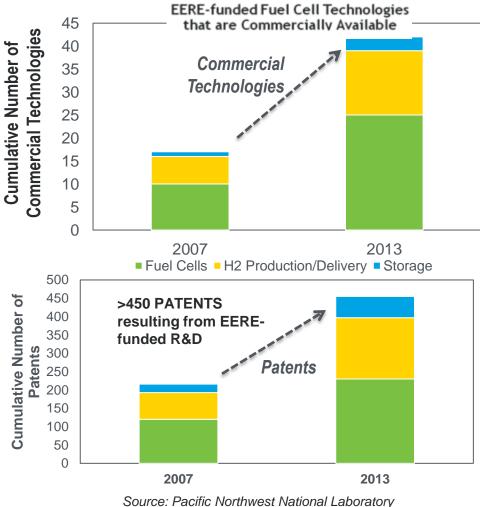
24 | Fuel Cell Technologies Office

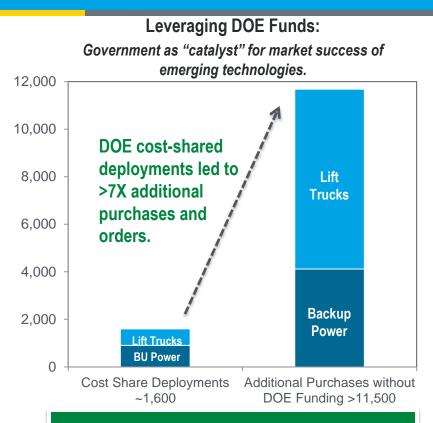

PNNL

eere.energy.gov

"Tech to Market" Assessing the Impact of DOE FCTO Funding

For selected projects tracked, DOE EERE funding has led to:

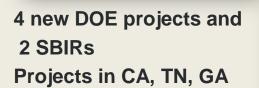

- Revenues valued at >4.5 times the DOE investment
- Additional private investment valued at ~5.5 times the DOE investment


Assessing the Impact of DOE Funding

DOE FCTO funding has led to >450 patents, 42 commercial hydrogen and fuel cell technologies and 65 emerging technologies.

Accelerating Commercialization

http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pathways 2013.pdf


Over \$37M saved in the last 5 years through active project management

Energy Efficiency &

Renewable Energy

Exciting new opportunities for fuel cells in early market applications – airport ground support equipment and medium-duty trucks

Events & Outreach

U.S. DEPARTMENT OF

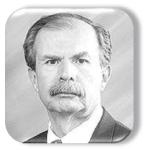
Energy Efficiency & Renewable Energy

"Investor Day" events- East & West Coasts November, 2013 at NY Times Building in NYC April, 2014 at Stanford University

President Obama at Fuel Cell Exhibit in Sweden

>80 news articles (blogs, etc) published in the last year

Webinars, google+hangout & workshops disseminate information



Secretary Moniz at DC Autoshow

In Memorium

ENERGY Energy Efficiency & Renewable Energy

Peter Hoffman

Editor, Hydrogen and Fuel Cell Letters & Journalist

- Author of The Forever Fuel—The Story of Hydrogen and Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet
- Longtime supporter and hydrogen and fuel cell advocate

Dale Gardner, National Renewable Energy Laboratory

Associate Lab Director of the Renewable Fuels and Vehicle Systems Directorate

- Astronaut on space shuttle
- Longtime contributor and leader in hydrogen, biofuels and vehicle technologies

Jim McGrath, Virginia Tech University

University Distinguished and Ethyl Corporation Professor of Chemistry

• Synthesis and characterization of new directly copolymerized sulfonated aromatic copolymers for proton exchange membranes

Sheldon Shore, Ohio State University

Emeritus Professor

- Long time (~60 years) researcher of boron compounds
- First researcher to synthesize ammonia borane.

World Class Researchers & Leaders -Examples

ENERGY Energy Efficiency & Renewable Energy

Adam Weber (LBNL) received a 2013 Presidential Early Career Award for Scientists & Engineers (PECASE). PECASE is the most prestigious U.S. award for young scientists and engineers.

The only EERE PECASE awardees ever were from FCTO!

Maria Ghirardi (NREL)

NREL's Research Fellows Council

James Miller and Riccardo Scarcelli (ANL)

SAE McFarland Award

Sanjeev Mukerjee (Northeastern University) and Piotr Zelenay (LANL)

Electrochemical Society Fellows

Kathy Ayers (Proton OnSite)

- American Chemical Society Women Chemist Committee's Rising Star Award Jeff Long (LBNL, Univ. of CA Berkeley)
 - American Chemical Society Inorganic Chemistry Lectureship Award

Energy Efficiency & Renewable Energy

Thank You

Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

hydrogenandfuelcells.energy.gov

New Selections for Hydrogen Production RD&D

Novel approaches to hybrid reforming, bio-derived liquids and solar water splitting

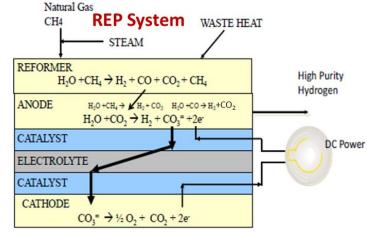
6 selections, \$13.3 M in federal funds

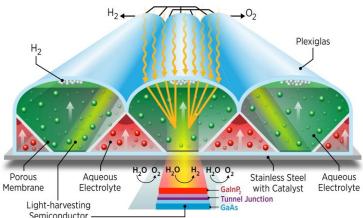
FuelCell Energy Inc.

(\$900k), Danbury, CT

• Novel reformer-electrolyzer-purifier (REP) system

Pacific Northwest National Laboratory


(\$2.2M), Richland, WA

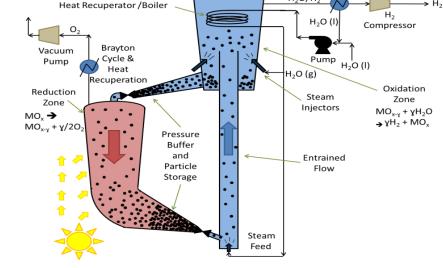

 Scalable, compact piston-type reactor for H₂ production from bio-derived liquids.

National Renewable Energy Laboratory

(\$3M), Golden, CO

- High-efficiency tandem absorbers based on novel semiconductor materials
- Economical solar hydrogen production from water.

eere.energy.gov



New Selections for Hydrogen Production RD&D

Novel approaches to hybrid reforming, bio-derived liquids and solar water splitting

6 selections, \$13.3 M in federal funds
 University of Hawaii (\$3M), Honolulu, HI
 Photoelectrodes based on novel wide-bandgap thin-films for direct solar water splitting.
 Sandia National Laboratories (\$2.2M) Livermore, CA
 Innovative high-efficiency solar

- thermochemical reactor for H₂ production. University of Colorado, Boulder (\$2M), Boulder, CO
- Novel flowing particle bed solar-thermal reactor to split water with concentrated sunlight.

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

New Selections for Hydrogen Delivery RD&D

Energy Efficiency & Renewable Energy

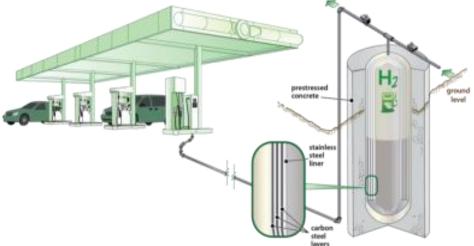
Innovative technologies for forecourt compression, storage and dispensing

4 selections, \$7.3 M in federal funds

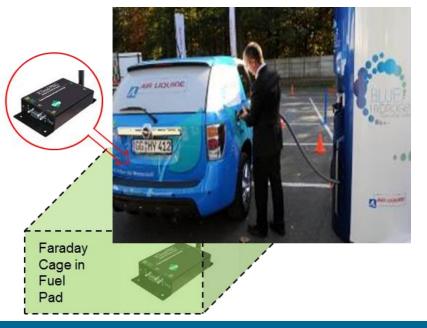
Southwest Research Institute (\$1.8M), San Antonio, TX

 Linear motor reciprocating compressor for forecourt H₂ compression

Oak Ridge National Laboratory (\$2.0M), Oak Ridge, TN


 Low cost steel concrete composite vessel for high pressure forecourt H₂ storage.

Wiretough Cylinders LLC (\$2.0M), of Bristol, VA

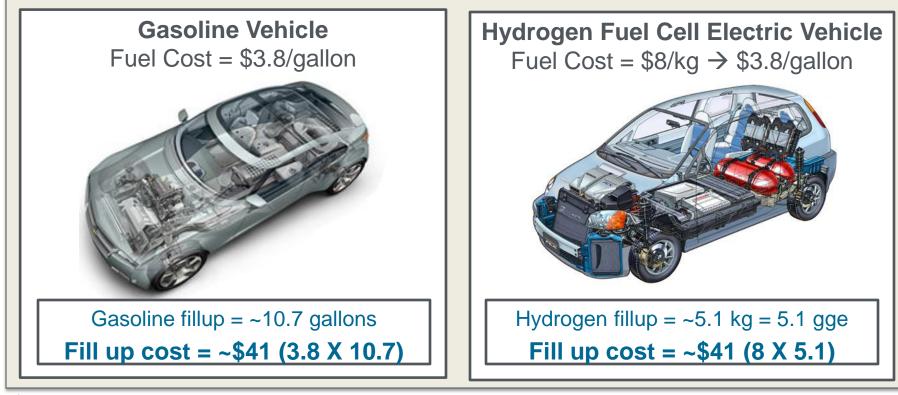

 Low cost 875 bar H₂ storage vessel using a steel wire overwrap.

Nuvera Fuel Cells Inc. (\$1.5M), Billerica, MA

 Integrated, intelligent 700 bar H₂ dispenser for fuel cell electric vehicle fueling

U.S. DEPARTMENT OF

hGallon

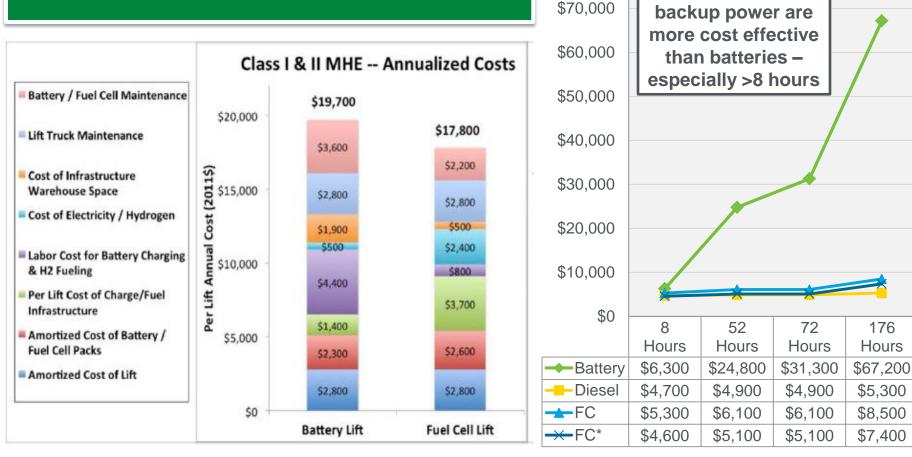


Concept:

Hydrogen Cost \rightarrow Hydrogen gasoline gallon equivalent cost \rightarrow hGallon Cost\$8/kg \rightarrow \$8/gge1 \rightarrow \$3.8/gallon

Filling up your tank costs the same if H_2 is \$8/kg or gasoline is \$3.8/gal.

An example, for a constant driving distance of 300 miles:


¹gge = gasoline gallon equivalent Assumptions: ICE fuel economy = 28 mpg, FCEV fuel economy = 59 mpgge

Annualized Cost of Ownership

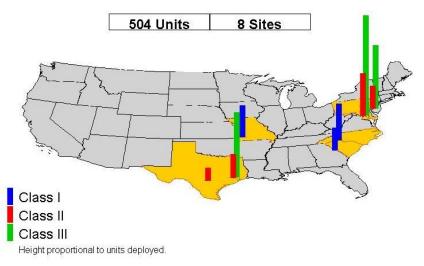
Backup Power

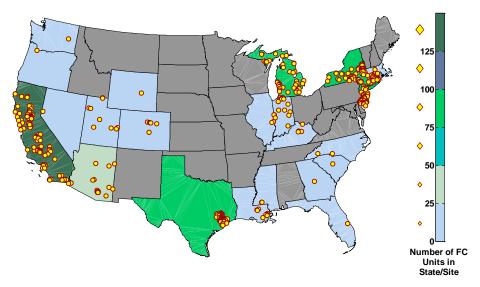
Fuel cells for

Fuel cells are becoming competitive in early markets!

\$80,000

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material handling Equipment http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/fuel_cell_mhe_cost.pdf NREL report Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison FC* = fuel cell with incentives


Data Collection & Analysis: Backup Power and Material Handling Equipment


Energy Efficiency & Renewable Energy

Validated over 800 backup power units with seven industry partners

- FedEx Freight East, GENCO, Nuvera Fuel Cells, Plug Power, ReliOn Inc., Sprint Communications, Sysco of Houston –

- 842 units in operation¹
- **1.94 MW installed capacity**, average site capacity of 4-6 kW
- 99.7% successful starts (2,579 start attempts)
- 65 continuous hours demonstrated
- >1,600 operation hours

U.S. DEPARTMENT OF

ENEKC

Validated over 450 material handling equipment units with seven industry partners

- 490 units in operation²
- >1,800,000 operation hours, 4.4 average operation hours between fills
- ~230,000 kg of hydrogen dispensed during more than 290,000 hydrogen fills with an average of 0.6 kg per fill

Data from 2009 Q1 to 2013 Q2.

¹Not all systems have detailed data reporting to NREL. ²One project has completed.

Energy Department Launches National Fuel Cell Technology Evaluation Center

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

a national resource for hydrogen and fuel cell stakeholders supported through Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office

ESIF Dedication, September 2013 http://apps1.eere.energy.gov/news/news_detail.cfm/news_id=19607

Photos by Dennis Schroeder, NREL