

Electricity Market Valuation for Hydrogen Technologies

Josh Eichman National Renewable Energy Laboratory EERE Postdoctoral Fellow 6/17/2014

AN049

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project start date: January 2013 Project end date: January 2015 Percent complete: 70%

Budget

FY13 DOE Funding: \$85k Planned FY14 DOE Funding: \$115k Total DOE Project Value: \$200k

Barriers

4.5 A. Future Market Behavior

- 4.5 B. Stove-piped/Siloed Analytical Capability
- 4.5 D. Insufficient Suite of Models and Tools

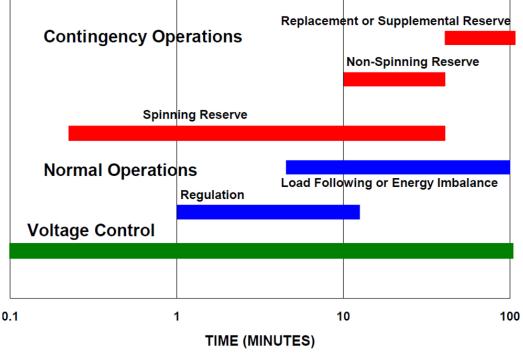
Partners

- Interactions / Reviewers
 - Xcel Energy
 - FuelCell Energy
 - Versa Power
 - ITM Power
 - Proton Onsite
 - NREL
- Project Team
 - Josh Eichman

Electricity Market Valuation

Relevance

Electricity Market Valuation for grid integration of Hydrogen Technologies


- Electrolyzer
 Operation Data (NWTC)
- H2A design parameters
- Electric Market Data
- EIA, EPRI and NREL cost parameters

Objective #1

Evaluate the ability of electrolyzers to bid into electricity markets

- Integration into electricity markets enables additional revenue streams [4.5A,B]
 - Energy Market
 - Ancillary Service Markets
 - Capacity Market
- Understanding the flexibility of hydrogen technologies is critical to assessing their ability to integrate with the grid [4.5B]

Source: Kirby, B.J. 2006. Demand Response for Power Systems Reliability: FAQ. ORNL

Objective #2

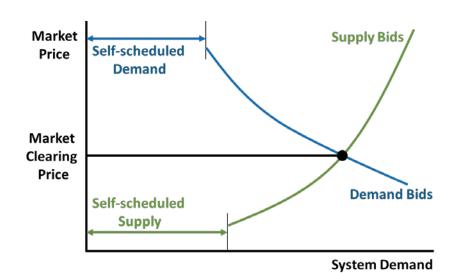
Assess the value proposition for grid integration of hydrogen technologies

125

100 75

50

25 0

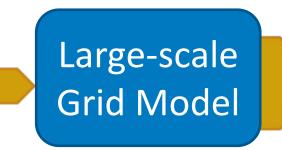

-25


-50

-75

Price Range

- Each market has different value and depth [4.5B]
- Need tool to perform co-optimization of all available services for H₂
 technologies [4.5B,D]



Objective #3

Include hydrogen technologies into large-scale grid operation models

- Large-scale grid models are used for exploring the integration of renewables or alternative technologies
 - 1,000's of generators and transmission lines
 - Performs mixed-integer optimization
 - Hourly or sub-hourly operation
- Hydrogen has never been integrated into these models (e.g., PLEXOS, GridView, Concorda Maps) [4.5B,D]
- Transmission Network
- Generator properties (coal, gas, renewable, etc.)
- Load requirements
- Reliability requirements
- Other System Constraints

- Generator operation (starts, fuel, costs)
- Fuel use and cost
- Emissions
- Transmission operation (flow, congestion)
- Imports & Exports
- Load served

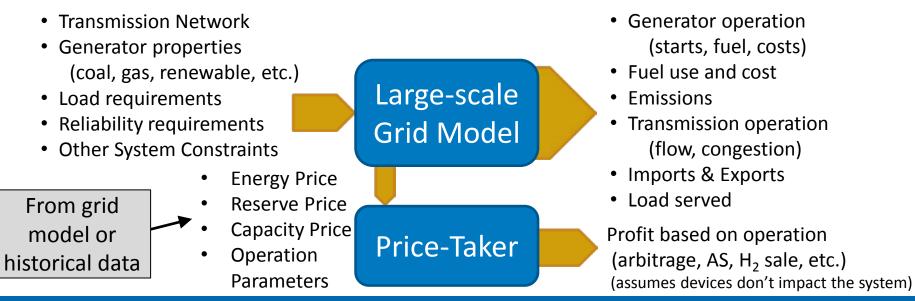
Electrolyzer Flexibility

Electrolyzer flexibility testing was performed to determine grid integration potential

• Frequency response

- Must consider the following characteristics for assessing grid integration potential [4.5A]
 - $_{\odot}$ Startup / Shutdown times $_{\odot}$ Ramp rate
 - Minimum turndown
 - Response time
- Equipment tested at National Wind Technology Center (NWTC)

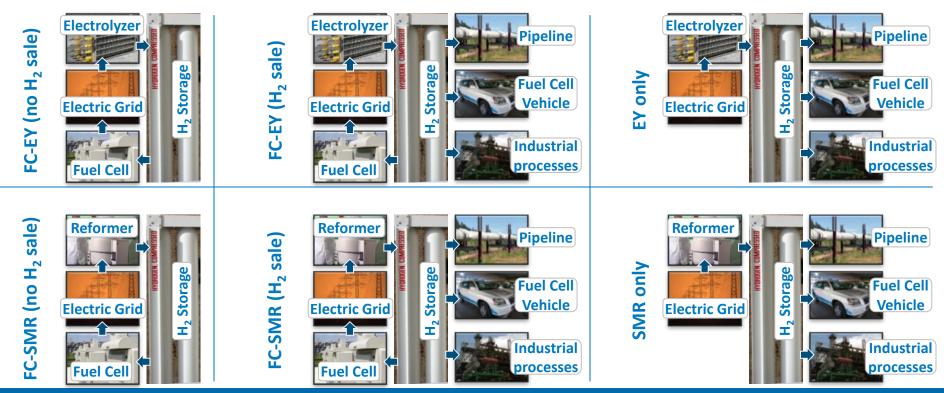
	PEM	Alkaline	
Manufacturer	Proton OnSite	Teledyne Technologies	
Electrical Power	50kW (208VAC)	40kW (480VAC)	
Rated Current	155A per stack	220A 75 cell stack	
Stack Count	3	1	
Hydrogen Production	12 kg/day	13 kg/day	
System Efficiency at Rated Current	68.6 (kWh/kg)	95.7 (kWh/kg)	



Grid and Revenue Models

Models perform time-resolved optimization of electricity markets

- The price-taker model (revenue model) can use historical data or large-scale grid model data for future scenarios (e.g., high renewable penetration)
- Price-taker calculates maximum revenue potential using market data and equipment operation parameters



Hydrogen system architectures

Approach

Hydrogen technology architectures can be flexible and many are examined for competitiveness

• Hydrogen analysis should include fuel cells (FC), electrolyzers (EY) and steam methane reformers (SMR)

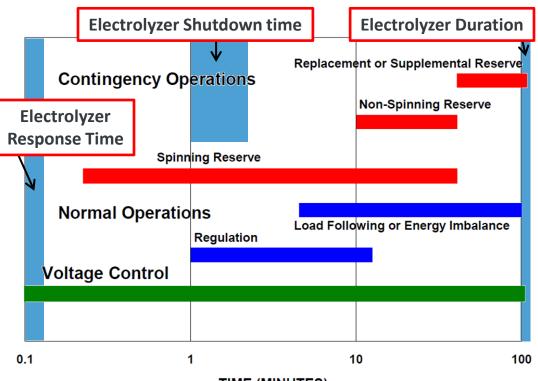
Assumptions

0

Assumptions were selected to represent a range from the current (high cost) to future (low cost) values

- Assumptions: Price-taker model
- Source: Pfeifenberger, J.P.; Spees, K.; Newell, S.A. 2012.
- Capacity market value is \$150/kW-year Resource Adequacy in California. The Brattle Group
- Sufficient capacity is available to participate in all markets
- Devices don't impact market outcome (i.e., small compared to market size)

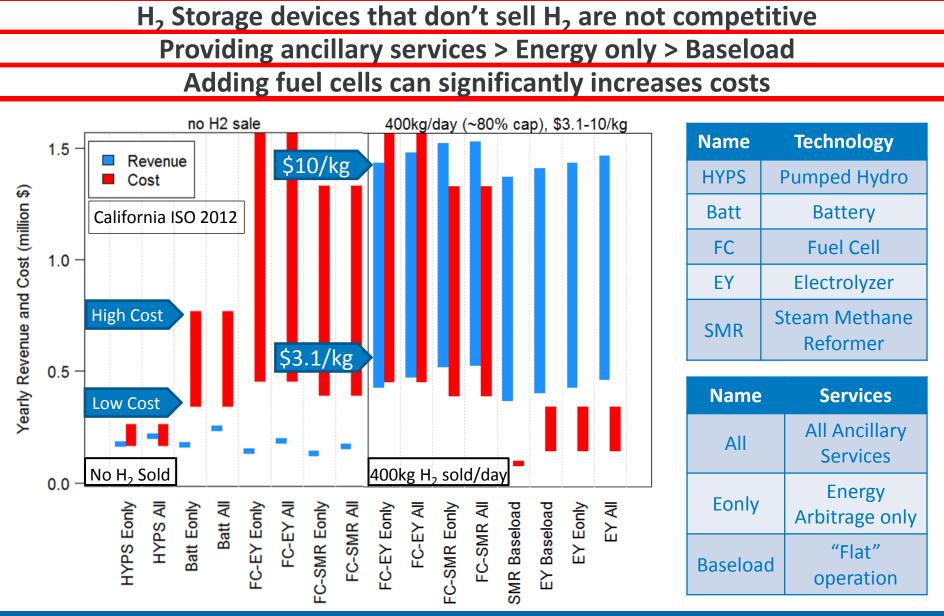
Properties	Pumped Hydro	Lead Acid Battery	Stationary Fuel Cell	Electrolyzer	Steam Methane Reformer
Rated Power Capacity (MW)	1.0	1.0	1.0	1.0	500 kg/day
Energy Capacity (hours)	8	4	8	8	8
Capital Cost (\$/kW)	1500 ¹ - 2347 ²	2000 ¹ - 4600 ¹	1500 ³ - 5918 ²	430 ³ - 2121 ⁶	427 – 569 \$/kg/day ⁴
Fixed O&M (\$/kW-year)	8 ¹ - 14.27 ²	25 ¹ - 50 ¹	350 ²	42 ⁴	4.07 – 4.50
					% of Capital ⁴
H ₂ Storage Cost (\$/kg)	-	-	623 ⁵	623 ⁵	623 ⁵
Installation cost multiplier	1.24	1.24	1.24	1.24	1.924
Lifetime (years)	30	12 ¹ (4400hrs)	20	204	204
Interest rate on debt	7%	7%	7%	7%	7%
Efficiency	80% AC/AC ¹	90% AC/AC ¹	40% LHV	70% LHV	0.156 MMBTU/kg ⁴
					0.6 kWh/kg ⁴
Minimum Part-load	30%7	1%	10%	10%	100%


Source: ¹EPRI 2010, Electricity Energy Storage Technology Options, 1020676 ²EIA 2012, Annual Energy Outlook ³DOE 2011, DOE Hydrogen and Fuel Cells Program Plan ⁴H2A Model version 3.0 ⁵NREL 2009, NREL/TP-560-46719 (only purchase once if using FC&EY) ⁶NREL 2008, NREL/TP-550-44103

⁷Levine, Jonah 2003, Michigan Technological University (MS Thesis)

Electrolyzer Flexibility

Electrolyzers can respond fast enough and for sufficient duration to participate in ancillary service markets

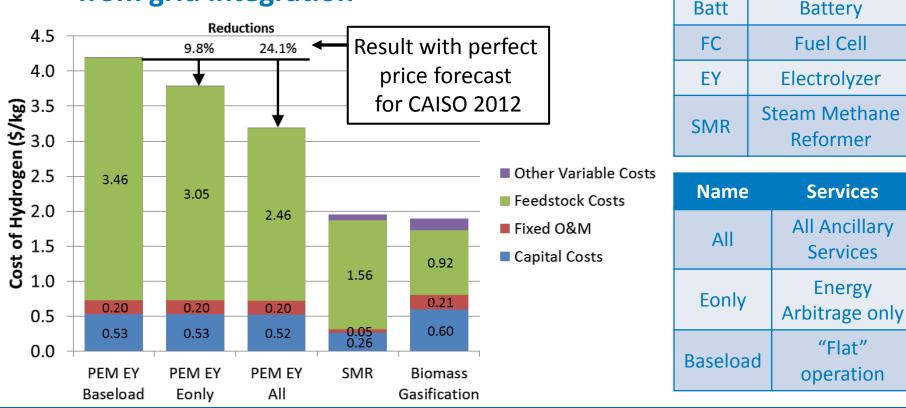

- Electrolyzers can behave like demand response devices
 - Startup and shutdown in minutes
 - Respond to a setpoint change in seconds
 - Can retain setpoint reduction for unlimited amount of time
 - Regulation up
 - Load-following up
 - Spinning Reserve
 - Non-Spinning Reserve
 - Replacement Reserve
- Publishing NREL report with findings

TIME (MINUTES)

Source: Kirby, B.J. 2006. Demand Response for Power Systems Reliability: FAQ. ORNL Source: Eichman, J.D.; Harrison, K.; Peters, M. (Forthcoming). Novel Electrolyzer Applications: Providing more than just Hydrogen. NREL/TP-5400-61758

Revenue Versus Cost Results

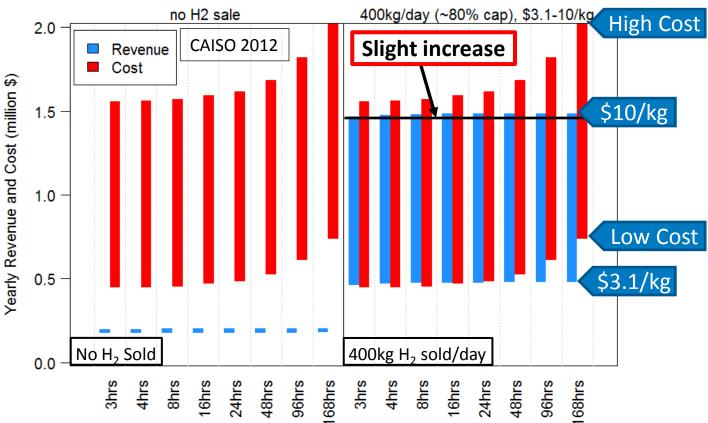
Technology


Pumped Hydro

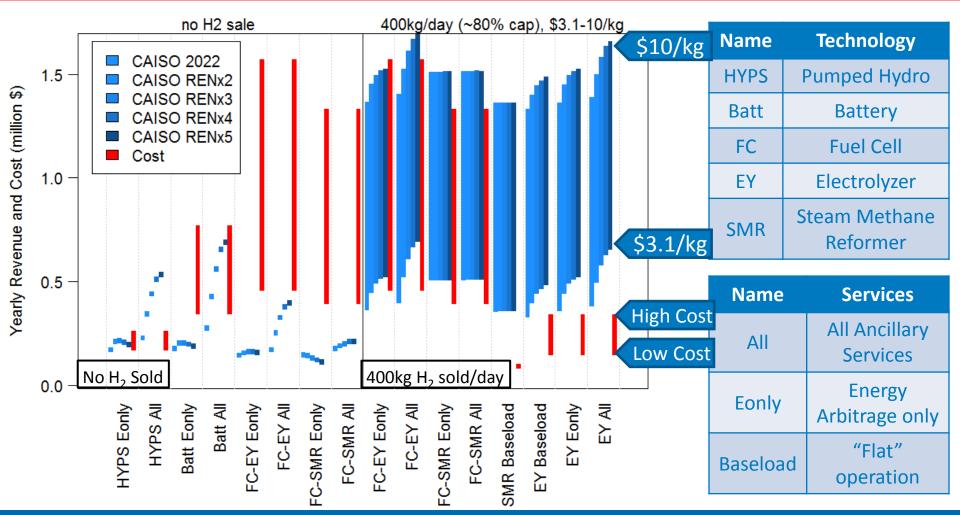
Name

HYPS

Integration with the grid can lower feedstock costs

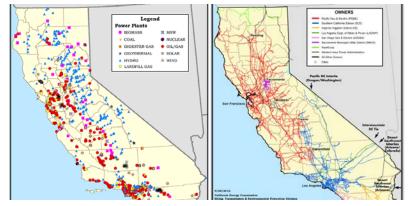

 Future Central Hydrogen Production Scenarios with feedstock cost reductions from grid integration

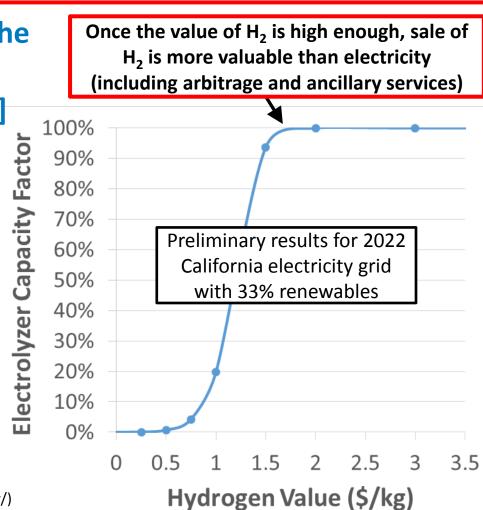
Storage Duration Sensitivity


More storage duration is not necessarily more competitive in current energy and ancillary service markets

• Revenue versus cost comparison for FC-EY device with varying storage duration

Effect of increasing renewables


More renewables increases the value for devices participating in ancillary services and those selling H₂


Electrolyzers in large-scale grid model

Successfully able to integrate H₂ technologies into a large-scale grid model

- Integrating H₂ devices into the grid model shows how the grid will be affected [4.5B,D]
 - Change in emissions?
 - Change in production cost?
 - Change generation mix?
 - Change prices?

California Power Plants and Transmission Lines (energyalmanac.ca.gov/)

No presentation for this project last year

Project Collaborations

Informed a variety of stakeholders about H₂ grid integration potential and received reviews to improve the analysis

- This work was presented to a variety of industry and government stakeholders to inform them of H₂ grid integration potential and to receive reviews to improve the assumptions and results.
- Interactions / Reviewers
 - Xcel Energy
 - FuelCell Energy
 - Versa Power
 - ITM Power
 - Proton Onsite
 - DOE Fuel Cell Technology Office
 - NREL

- Need to disseminate findings to hydrogen community as well as utilities, grid operators, etc.
- Policy or regulatory hurdles hindering integration of hydrogen technologies into the grid
 - Capacity requirements (>1MW)
 - Interaction with multiple markets (i.e., electricity, gas, transportation)

- Complete publication of electrolyzer flexibility paper
- Submit paper with price-taker analysis results to peer-reviewed journal
- Run large-scale grid model with different H₂ technology configurations

Summary

This work explores future market opportunities for H₂ technologies and expands modeling capabilities for integration with the grid

- Electrolyzers are flexible enough to participate in energy and ancillary service markets [4.5A]
- Enabling H₂ technologies to integrate with electricity markets can enhance the value proposition [4.5B,D]
 - Sell H₂: FC-EY systems providing strictly storage are less competitive than systems that sell H₂ (use of curtailed energy can affect outcome)
 - Revenue w/ ancillary service > energy only > baseload
 - Electrolyzers operating as a "demand response" devices have very favorable prospects
 - More storage is not necessarily more competitive in current energy and ancillary service markets (but may add value in capacity market)

Technical Back-Up Slides

• Acronyms

0	AC	Alternating current
0	AS	Ancillary Services
0	CAISO	California Independent System Operator
0	NYISO	New York Independent System Operator
0	ISO-NE	Independent System Operator, New England
0	EY	Electrolyzer
0	FC	Fuel Cell
0	HYPS	Hydroelectric pumped storage
0	kg	Kilogram
0	kWh	Kilowatt-hour
0	LHV	Lower heating value
0	MMBTU	Million British thermal units
0	0&M	Operation and maintenance
0	SMR	Steam Methane Reformer

Price-Taker Model

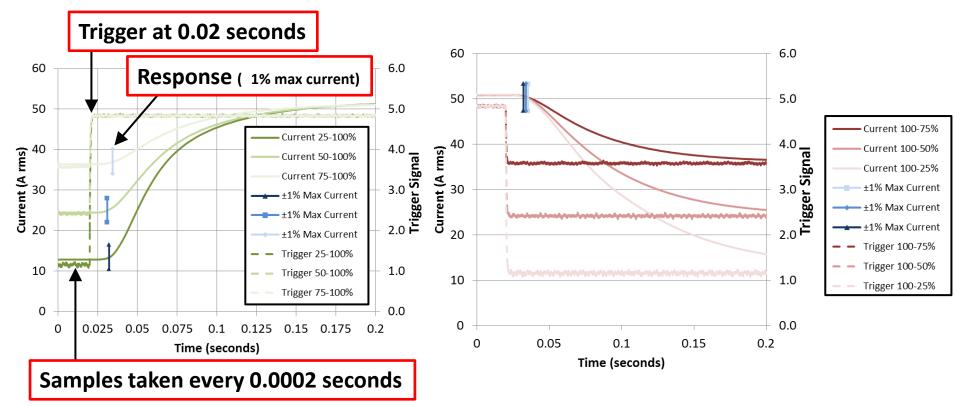
Performs time-resolved co-optimization of electricity markets (energy and ancillary service products)

- Price-Taker model calculates maximum revenue potential using market data and equipment operation parameters
 - Energy Prices (e.g., hourly CAISO 2012)
 - Reserve Prices (e.g., hourly CAISO 2012)
 - Capacity Price (for new market entry)
 - Hydrogen Prices (Sensitivity performed)
 - Operation Parameters (e.g., power, efficiency, capacity, availability)

Price-Taker Co-optimization Model

Profit based on operation (arbitrage, ancillary services, etc.)

Assumptions


- 1.) Sufficient capacity is available in all markets
- 2.) Objects don't impact market outcome (i.e., small compared to market size)
- 3.) Capacity market value is \$150/kW-year

Source: Pfeifenberger, J.P.; Spees, K.; Newell, S.A. 2012. Resource Adequacy in California. The Brattle Group

Electrolyzer testing

Electrolyzers can respond sufficiently quick enough to participate in frequency regulation

• Response time and ramp-rate tests were performed for the electrolyzers

