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Overview :
Timeline Barriers
e Project start date: 03/2010 e DURABILITY: Free-radicals
e Project end date: 03/2014 degrade membranes and
e Percent complete: 100% catalyst supports
PGM total loading: 0.125 mg/cm? (2017
target) e COST: Unique catalyst
PGM total content: 0.125 g/kW (2017 mlcro_stru.ctures and
target) additives improve
. _ o utilization and durability of
Loss in initial catalytic < 40% mass activity loss ultralow precious metal
activity (2017 target) loadings that reduce cost
Electrocatalyst support <10 % mass activity loss
stability: (2017 target) « PERFORMANCE: More
Durability: OCV hold <20 mA/cm? H, X-over efficient catalyst layer
500 h <20 % OCV loss (2017) structures improve
BUdget Durability with cycling: 5000 h (2017 target) transport properties and
performance
*Planned FY14 DOE Funding: $275K
Total Project Value: $6,000K e Ballard Fuel Cells, UNM, UD
*Cost Share Percentage (if applicable): 9% e LANL
2]
& !:%ﬁlgmgé BA'.I.ARD THI :ﬂm‘. , UNIVERSITY (’fDELAWARE 4 ﬁ;((}l*:

NEW MEXICO

rrrrrrrr



Project Objectives — Relevance- Collaborations

*Development of durable, high mass activity Platinum Group Metal cathode catalysts -enabling lower
cost fuel cells - Synthesis and characterization of Low PGM catalysts: LANL & UD Low loading Pt on
carbon-nitrogen nanowires: LANL & ORNL

*Elucidation of the interconnected relationships between PGM, nucleation, growth catalyst shape,
particle size and activity will help design better catalysts - Pt nucleation and dispersion on carbon

research enabled well-dispersed Pt deposition on novel carbon nanowires: LANL & UNM

*Optimization of the cathode electrode layer to maximize the performance of PGM catalysts-
improving fuel cell performance and lowering cost — Nanowire supports: LANL, Advanced
microstructural catalyst layer model development- provided information on optimization of support

geometry: Ballard

*Understanding the performance degradation mechanisms of high mass activity cathode catalysts —
provide insights to better catalyst design. DFT models for particle reactivity: LANL, Free Radical
scavenging MEAs; enhanced oxygen free radical elimination using size-optimized doped ceria

nanoparticles: LANL & UNM

*Development and testing of fuel cells using ultra-low loading, high activity PGM catalysts-Validation
of advanced concepts. Fuel cell testing of low-loading Pt carbon nanowire support derived from
molecular templated polypyrrole: LANL & Ballard

*|MPACT: This project will help lower the cost and the precious metal loading of
PEM fuel cells and improve catalyst durability
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Approach: Ceria & Doped Ceria additives for Improving Durability

* Problem: Fuel cell degradation rates are higher at low PGM loadings-increased free
radical generation results in more ionomer attack

* Previously: Originally developed ceria impregnated carbon supports, switched to additives

* Progress: Controlled synthesis of ceria crystallite size. Determined peroxide decomposition and
free radical generation rates for CeO,, Gd-CeO, Pr-CeO,and Zr-CeO,. Performing OCV tests and
accelerated stress tests of fuel cells w/ and w/o ceria.

CeO,,
£ 12.9 nm CeO,,
+3 4.83 nm
8 23%ce?  CeO,,  483m
2 = 7.0 nm
S Z 25% Ce*?
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Ceria Ce3* / Ce** ratio varies with crystallite size

Peroxide generation and degradation
into free radicals that attack the
carbon support and PEM
* Cerium cation exchanged membranes are currently used to stabilize PEMs
— leaching observed from the membranes
» Ceria nanoparticles offer a relatively acid stable peroxide decomposition catalyst
* However, free radical formation is also destructive
— Characterized relative decomposition/formation rates (right)
* Determine how chemical substitution changes ceria free radical scavenging properties
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Cerium Oxide Nanoparticles for Stabilization
* Cerium ions are known to be both a good
Ce**+ H,0, — Ce*3 + HOO. + H* peroxide decomposer and a good radical
) 5 scavenger! But:
+ + +
Ce™ + HOO. —Ce™ +0,+H — ions migrate and leach out of fuel cells
Ce*3 + HOO. + H* — Ce** + H,0, — Cerium oxide nanoparticles slowly
dissolve
For Cerium ions in Solution
. * Rate of peroxide decomposition increases
Karakoti et al. with decreasing particle size, as does Ce*?
concentration
— Ce3* larger ionic radii and oxygen
B, vacancy creation decrease surface
. energy of particle
xRN * |s there an optimal size?
a> — Does the increasing surface tension of
small particles change the energetics
of the Ce (IV) to Ce(lll) reactions?
Ceria nanoparticle reconstruction - Gd doping creates vacancies « How does doping Ceria affect selectivity,
rate & particle stability?
_ Gd3+ Zr4+ Pr3+,4+
Karakoti, Chem. Soc. Rev., 39, 4422, 2010
T X T Sayle, S.C. Parker and D Sayle, Chem. Commun. 2004, 2438-2439
Lubomirsky,http://www.weizmann.ac.il/materials/igorl/Inelastic-effects
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Selectivity for Free Radical Production Versus Particle Size

* Large ceria (37.7 nm) Selectivity™® vs. Peroxide
—Good for scavenging 70 Decqmp05|t|on 7
radica|S, poor for Increasmg free radical yield . 7
peroxide decomposition 80 1 1 O
. . — | 6.4 nm
* Medium ceria (7.0 nm)  2o's= .
—Fastest peroxide SEw 6.8nm
decomposition with good 25 o
peroxide selectivity 2w > . »
. GL)B [ 7 nm ncreasmg.p.erom e:
* Small ceria (5.4 nm) gE2 U gumatom  decompositionrate
. ~ [ am >
—Poor for scavenging oo XMA lj 7.8 nm . |
radicals, good for 0 SAV NS "t |

peroxide decomposition 0 @‘ "4® s s 10
Rate of Peroxide Decomposition
(mmoles O /min * m°)

* Free radical generation measured using Carboxyfluorescein luminescence
* Peroxide decomposition rate measured by oxygen gas evolution rate
* Rates are normalized to surface area measured by gas adsorption
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Accelerated Stress Test: Small Ceria Particles Added to Cathode

7

Open Circuit Potential (Volts)
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Rate of 0.70 pg F/hr?

* Black dots- no particles added to non-stabilized MEA rate of 0.23 pg /hr2
* 5nm ceria nanoparticles (2 w/o) do not provide MEA

stabilization despite their high surface area

—Too many free radicals are produced by the decomposition
of peroxide (previous slide)
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Accelerated Stress Test: Medium Ceria Particles Added to Cathode °

Open Circuit Potential Hydrogen Cross Over Fluorine Emission Rate
0.95 7.00 | T T 250
. ¥ cathode
6.00 .
. 090 — 4.4 pA/hr*cm? ; £ 20 ®Anode
2 £ i
s 2 2 |
5 oss E S e Rate of 0.60 pg F/hr?
g 2 . £ Rate of 0.30 g F/hr2
g 2 5
= o @ I
3 080 o E 100
S 5 L
O >
© o075 T 2 50
' 1.00 20 mV/hr ° ._
° L |
070 0.00 ! 0l = TR L "
0 100 200 300 400 500 600 0 100 200 300 400 500 0 50 100 150 200 250 300 350 400
Time (hours) Time (hours) Time (hours)

Rate of 0.40 pg F/hr?
Rate of 0.25 pg F/hr?

 7nm particles provide good initial stabilization

e Over time they get smaller via dissolution causing increased
free radical generation
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Accelerated Stress Test:

Large Ceria Particles Added to Cathode

Open Circuit Potential
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* Red 37nm particles
* Black- no particles

Hydrogen Cross Over Fluorine Emission Rate
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5
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3
[ ] o
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Rate of 0.11 pg F/hr?
Rate of 0.06 pg F/hr?

* Degradation reduced~5X
 Relatively large particles do not have much surface area
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Effects of Pr Doping on Ceria Performance o

Selectivity? vs. Peroxide Decomposition

70 - : — ; — — ; . R
54 nm
50 CeO, o
Cep95Pro50;
© i 6.4 nm
o0 50 + ]
~ » ®
*
3% e 5.0nm ]
S E 40 - 6.8 nm ]
gE 14.4 nm . |
33 30 | |
. B 17.1 nm 5.6 nm ]
n O
28 ,, | '
Eg 20 197nm 12.9 nm . |
] 8.1 nm -~ nm
10 | 7.8 nm ° b
: 37.7 n: ‘ o ‘Bg‘nm/;'é) nm
I 9nm
I Y 7.6 nm
0 ‘ :4 . e% 0.9 é‘d"” S : L S
0 2 4 6 8 10 12 14 16

Rate of Peroxide Decomposition
(mmoles O_/min * m?)

5 % Pr doping generally decreases free radical production but size results
show scatter due to varies surface segregation of dopant, small sizes still

generate significant amounts of free radicals
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Effects of Gd Doping on Ceria Performance
Selectivity! vs. Peroxide Decomposition
70 - . o .
- CeO, o
[ 4 nm
60 Ceg95Gdy 50, °
© N ' 6.4 nm
= a 50 | °
L)
20 i
g E 40 : 6.8nm ¢ 6.4nm
i.g 3 I 14 .4 nm238 nm °
A3 30 1
RS |
8o
Z E 20 - 19.7 nm 12.9nm ]
' 8.1 nrg
10 | 7.8 nm
'37-_”:1 $ éﬂjyg%m 7.2 6.7 nm
t . .2 Nnm -
0 ! ..\. .. 4\/. .I/ ® .
0 2 4 6 8 10 12 14 16
Rate of Peroxide Decomposition
(mmoles O_/min * m?)
5 % Gd doping of ceria results in high peroxide decomposition
rates with lower free radical generation for most particle sizes
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Effects of Zr Doping on Ceria Performance v
70.00 . . .
C802
6000 | Cey 052700505 sanm ]
CeO.BSZrO.‘IﬁOE
we ?: o 14.7 nm 6.4 nm ]
* 0
>0
S E 4000
T E
% Lé 6.8 nm
0o 3000 - -~
o 3
o O
Z E 2000 -  1320m |
~ 6.9nm
9.6 nm -
10,00 | 44 Emm £ 67mm o
- 19.7 nm P y 66nm -
32,0 nm X * KA-/ o1 m iV
0.00 ‘ | -
0 5 10 15 20
Reactivity (mmoles Ozfmz*min)
15 % Zr doping of ceria results in high peroxide decomposition
rates with low free radical generation for small particle sizes;
Zr doping also improves nanoparticle acid stability
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Ceria Migration studies at APS Argonne -

* MEAs were

40 :
prepared with 2% Platinum
. . 30 Cerium
ceria nanoparticles | 100 * Ce/Pt
in cathode layer o
n
% 10
e AST OCV test s 4
performed s »
i
e APS X-ray 20
Fluorescence -30
microprobe used to 40 =
; Normalized Intensity SeC2 et
ch.a racjcenze Ce oy |
migration | Platinum

Cerium
00 * Ce/Pt

e 450 hr AST showed
significant Ce
migration from
cathode to anode

Position (micrometers)

* Note Ce does not
stay in membrane

A Normalized Intensity o
. Lo o
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Molecular Templated Polypyrrole Nanowire Supports

* New Direction

— Process
* Bulk synthesis of PPy nanowires
* Pyrolyze to form powder
* Platinize using polyol process
* Prepare catalyst ink
* Coat decals (or membrane)
* Hot-press

— Advantages
* Conventional MEA manufacture
* Greatly improved MEA performance

* Previous Effort

— Process

* Electropolymerize PPy nanowires
onto a substrate

* Pyrolyze
* Platinize: sputter or impregnate
* Hot press to membrane
— Issues:
* Achieving high Pt dispersions
* Poor MEA performance (esp.
Pt utilization & flooding)

Electropolymerized PPy nanowires
e Advantageous geometry of nanowire network supports

— Tortuous branched networks maintain open pores but minimal “voids”
* More free volume available for ionic and mass transport
* Facilitates ionomer access and dispersion during fabrication

owu_n
z

— Enhances electronic conductivity (including
* Minimizes electronically stranded catalyst
» Comparison with other carbon tube/fiber/wire support options
— Nanotubes/fibers (vapor grown): expensive, not branched

direction)

— Polyaniline nanowires: easily made, but pyrolyze poorly “Tetrapod” Catalyst Structure
— Polypyrrole nanowires: readily graphitize Lee et al., Angew. Chem. Int. Ed.,

* Synthesis by potentially low-cost “soft” template processes 52,1026 (2013)

* Good results with Heparin:Methylene Blue soft template (Wei et al., Synth. Met. 160 (9-10), 849-854
(2010))

— Some control of fiber diameter possible by varying the Hep:MB ratio
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PPy nanostructures w/ various templates v
[e0ses Pectin
o Wi H/h (low methoxyl,
+ maltodextrin)
0505 HNS0; COOH COOCH,
Q 0
( ) H H .
Heparin 2"/ring ol o 1) H o o7
H OH . H OH
/ <10)/ring
50% methoxylated
(0% is polygalacturonic acid)
sos- OH CH{
0 % o
1o OH ’
HO 19)/ring = ir
0( )/rlng " t-Carrageenan
Starch (food grade)
HiC. /©: :CL = CH3
- CH3
Methylene Blue
AL
I\fla dAIglgate A-Carrageenan
(food grade) (food grade)
. OH  _oH 50,
&i/ %
O o]
O
so;- " o
S0, n
A) 1 )/r|ng 1.5(‘)/ring
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Dye Templating Functionality

16

g
H.C 8 1
TN
P 3, cH
>~ .
NIRRT
HoN 5 10 4 ‘
Neutral Red CHs
Position on anthracene molecule
Dye 3 3 =T 9TT0] Result
Methylene Blue —N(CHs;), —N(CHs;), C |N| S Fibers
Neutral Red —N(CH;), —NH, —CH; | N| N | Globules
Basic Blue 3 *N(CHQCH3)2 *N(CHzCH3)2 C N| O Globules
Pyronin Y —N(CH3), —N(CHs), C C| O | Globules*
Toluidine Blue O —N(CHs), —NH, —CH; | N[ S Fibers
Azure C —~NHCH; -NH, C [N| S Fibers

*Fine, fibers obtained when used in combination with pectin

Key functionality for templating wires: sulfur heteroatom at position 10
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Milestone: Catalyst Scaleup for Ballard v

R )~ : Catalyst for Ballard:
) &, ; = Atotal of 1.2 g sent
=  High nanowire surface area, 20-30 nm width
=  Highly graphitic C + 10% N content XRD:
=  0g=0.24nm, c= 1.02nm,high amplitude for in

plane peaks
=  Order parameter ~ 1.3 nm
s ~90m?g

= 14wt% Pt catalyst
* Modified polyol process
* High Pt Dispersion
* ~2nm-3 nm particles

Space Group a b [ Alpha Beta Gamma

Phase 1D (1)
M Graphite - C R3 (148) 237337 237337 10.19852 90.000 90.000 120.000
el A i o TR " L ) " " N
I [ T W ' vy
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90
Two-Theta (deg)
A , ~\ AK
‘ %ﬁ!ﬁm& BALLARD I'HE UNIVERSITY of UNIVERSITY Qf DELAWARE

— EST.1843 - power 1o change the world NEW MEXICO

National Laboratory



18

PPy to Pt-PPPy Nanowire Catalysts Scale Up

1.2 g of high quality catalyst been sent to Ballard for FC testing

* The pyrolyzed polypyrrole, C, N, nanowires formed using the low cost, two-part carrageenan plus
methylene blue soft template

* Surface area is 90 m?/g, about 25% higher than previously reported, fiber diameter of about 25 nm.

* EDX & CHNO analysis results indicate a N content of 6-12% despite the relatively high pyrolysis
temperature of 1000°C.
* XRD & TEM (ORNL) indicates 2-3 nm Pt particle size

Molecular Template Dye/carbohydrate

Pyrolysis: 1000°C, 1h Platinization: polyol process

polymerization of PPy ~ 50% wt loss 13.5 wt% Pt: surface
Metal-free ammonium persulfate ~90% C- 10% N loading™ 3x 20%Pt/C
oxidative polymerization forms Highly graphitic structure 2.6 nm particles (TEM)
rzr;owires No sulfur detected
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Support Loadings: Comparisons with Commercial Catalysts

Support Pt
Loading particle

sy e e

Support

Catalyst (Wt%) SA

Pt

1500

Pt-PPPy Nanowires

1000

Pt-PPPy 14 90 1.81 2.4

BASF BASF (20%Pt/C)
20%Pt/ 20 250 1.00 3. 500

XC72 TKK (50%Pt/C)
TKK- (11 200)
TEC10E 50 800 1.25 2.8 (311 |

50E % 20 30 40 50 60 70 80

Two-Theta (deg)

*support loading = 1000* (Wt%Pt)/(wt%Support*SupportSA)

80

70 -

60 |

a0

40 +

# Pt Parlicles

30 -

20 -

A) g ﬁ Pt Particle Size (nm) ke
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Mass Activity and Specific Activity of Pt/PPPy ~

Mass Activity |Specific Activity ECSA IEthrig?r:Z?er
Sample (mA/g) (mA/cm?) (m2/g)
(hm)
Pt/PPPy (100 pug/cm?)| 0.15 (0.23) | 0.19 (0.29) 82 3.4
Pt/PPPy (500 pg/icm?)|  0.067 (0.20) | 0.069 (0-25) 84 3.3
Pt/Graphitized C (100 pg/cm?) 0.072 (0.16) | 0.20 (0.40) 40 6.5
LANL’s data* 0.078 0.085 91 3.1

(Mass transport corrected values)

= As expected, the mass transport corrected activities are much higher vs. the
uncorrected values.

= The Pt/PPPy sample has a slightly higher mass activity, but lower specific
activity vs. the Pt/Graphitized C catalyst.

= LANL’s data performed in H,SO,.

1 Applied Catalysis B: Environmental, 56, 9 (2005)
/‘\,
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MEA Composition and AST Conditions

MEA Composition

Cathode Pt Loading Anode Pt Loading
(mg/cm?) (mg/cm?)
Baseline MEA 0.055 0.1
LANL Pt/PPPy MEA 0.075 21 0.1

AST Conditions

Anode/Cathode Pressure: 5 psig

OOOOOOOOOOOOOOOOOO
11111111

60 s
1.0V Temperature: 80 °C
o
S
= 30 s 30 s
>106V 0.6V
Time
2
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Anode/Cathode Humidity: 100 %
Diagnostics at: BOL, 700, 1400, 2100, 4700 cycles

UNIVERSITY of DELAWARE

AK
FRIDGE
Natiznal Laboratary



MEA Performance of Pt/PPPy vs. Pt/C Baseline at 100% RH

1000
900
800
700
600
500
400
300 | —=—Pt/Graphtized C (0.4 mg/cm2) )
200 1 —— Pt/Graphtized (0.055 mg/cm?2) i

100 | —e— Pt/PPPy (0.075 mg/cm2)

Cell Voltage (mV)

0 0.5 1 1.5 2
Current Density (A/cmz)

= At 100%RH, the preliminary data suggest that the Pt/PPPy showed similar
performance to the Pt/Graphitized C catalysts with similar loading.

= As expected, the low Pt loaded MEAs showed lower performance than the MEA
with 0.4 mg/cm? Pt at the cathode.
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Performance at 60% RH ’

—e— Pt/Graphtized C (0.4 mg/cm2)
—— Pt/Graphtized C (0.055 mg/cm2)
—=— Pt/PPPy (0.075 mg/cm2)

oo

o

o
!

)]

o

o
!

200

Cell Voltage (mV)
AN
o
o

0 | |

0 0.5 1 1.5
Current Density (mA/cm?)

= At low (60%) RH, the PPPy-based catalyst shows higher performance than
similarly loaded Pt/Graphitized C, and comparable performance to the 0.4
mg/cm?2 Pt-loaded MEA at high current densities.

= It is possible that the PPPy structure helps to manage water in the catalyst
layer, but further work is required to verify this.
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Results of AST Cycling (0.6-1.0 V)

24

Polarization Curves Under Air (Pt/PPPy)

21 % O,, 75 °C, 100 % RH

600
—e—0 Cycles N
_ —+—700 Cycles £ 500 -
2 —A— 1400 Cycles Z
o 2100 Cycles — 400 -
S —&— 4700 Cycles +
o —~
> > 300 -
3 E
0 200
8
: S 100 -
0.0 ‘ | ‘ >
0.0 0.5 1.0 1.5 2.0 0
Current Density (A/cm?)

——0.075 mg/cm2 Pt/PPPy

——0.06 mg/cm2 Pt/Graphtized C

500 1000
Cycles

1500 2000

= The performance loss of the Pt/PPPy catalyst was found to be similar to
that of Pt/Graphitized C following a voltage cycling AST.
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Milestones & No-Go Decisions

 Milestones:
—Nov 2013

* Accomplish large batch synthesis of novel nanowire PGM catalysts- LANL completed

* Complete ceria nanoparticle migration study using APS synchrotron X-ray microprobe LANL
& UNM completed

— Feb 2014

* Complete oxygen free radical decomposition studies for Pr, Gd and Zr doped Ceria — LANL
completed,

* Complete AST testing of MEAs incorporating ceria free-radical scavengers — LANL & Ballard
completed,

—March 2014

* Complete characterization (XRF, SEM, HRTEM, XRD,) of LANL Catalyst materials delivered to
Ballard—LANL & ORNL completed

* Perform fuel cell testing using novel nanowire PGM catalysts to demonstrate 50 cm? single
cell performances with << 0.1 mg Pt/cm? that equal or exceed conventional MEAs with 0.2
mg Pt/cm? — LANL & Ballard achieved

* No-Go Decisions
— Ceria/carbon composite Pt supports — <~8 nm ceria counterproductive
— Pt Pd nanoplatelet catalyst development-could not reduce particle size
— Pt;Sc & Pt,Y catalysts - ORNL microanalysis indicated HSA materials were oxides

/'\,
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Summary

* Ceria free-radical scavengers
— Identified particle size range that maximizes scavenging
— ldentified dopants that improve free radical elimination
— Structurally characterized ceria and doped cerias
— FC OCV testing results meet durability technical target
* 2017 Durability Target: OCV hold 500 h
— <20 mA/cm? H, X-over (achieve < 5 mA/cm?)
— <20 % OCV loss (achieve about 10%)
— AST testing completed
— Ce migration study completed
* Pt-PPPy nanowire catalysts
— Successful scale up of low-cost soft-template PPy nanowire synthesis process

— Achieved reproducible high Pt dispersions with high surface loadings on highly graphitic
surfaces in repeated large batches

— Completed fuel cell testing; low loading low humidity performance is enhanced compared
to conventional carbons

e Conclusions: Low loading Pt supported on novel nanowire structured carbon catalyst
show promise in improving performance in low PGM loading fuel cells thus lowering
cost.

* Doped Ceria nanoparticle additives of the right size and composition improve
lifetimes of low loading fuel cells
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Proposed Future Work

* Ceria free-radical scavenger additives:
— FC lifetime OCV testing and performance testing with Zr and Gd-doped cerias
— Additions of doped ceria to Pt nanowire catalysts and performance testing
* Pyrolyzed PPy nanowire supports:
— Synthesize finer nanowires
— Optimization of pyrolysis process to maximize durability and Pt dispersion
— Enhanced PPPy nanowire functionality via heteroatom doping
— Catalyst layer composition and processing optimization
— Comprehensive Fuel cell and full suite accelerated stress testing
— Scale up catalyst production to stack testing quantities
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