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• Project start date: 03/2010  
• Project end date: 03/2014 
• Percent complete: 100% 

•FY13 DOE Funding: $1,100K 
•Planned FY14 DOE Funding: $275K 
•Total Project Value: $6,000K 
•Cost Share Percentage (if applicable): 9% 

 

Timeline 

Budget  

Barriers 
  

• Ballard Fuel Cells, UNM, UD 
• LANL 

Partners 

Overview 

• DURABILITY: Free-radicals 
degrade membranes and 
catalyst supports 
 

• COST: Unique catalyst 
microstructures and 
additives improve 
utilization and durability of 
ultralow precious metal 
loadings that reduce cost 
 

• PERFORMANCE: More 
efficient catalyst layer 
structures improve 
transport properties and 
performance 

PGM total loading: 0.125 mg/cm2 (2017 
target) 

PGM total content: 0.125 g/kW (2017 
target) 

Loss in initial catalytic 
activity 

< 40% mass activity loss 
(2017 target) 

Electrocatalyst support 
stability: 

< 10 % mass activity loss 
(2017 target) 

Durability: OCV hold  
500 h 

< 20 mA/cm2 H2 X-over 
< 20 % OCV loss (2017) 

Durability with cycling: 5000 h (2017 target) 
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•Development of durable, high mass activity Platinum Group Metal cathode catalysts -enabling lower 
cost fuel cells - Synthesis and characterization of Low PGM catalysts: LANL & UD  Low loading Pt on 
carbon-nitrogen nanowires: LANL  & ORNL 
 
•Elucidation of the interconnected relationships between PGM, nucleation, growth catalyst shape, 
particle size and activity will help design better catalysts -  Pt nucleation and dispersion on carbon 
research enabled well-dispersed Pt deposition on novel carbon nanowires: LANL & UNM 
 
•Optimization of the cathode electrode layer to maximize the performance of PGM catalysts-
improving fuel cell performance and lowering cost – Nanowire supports: LANL, Advanced 
microstructural catalyst layer model development- provided information on optimization of support 
geometry: Ballard 
 
•Understanding the performance degradation mechanisms of high mass activity cathode catalysts –
provide insights to better catalyst design.  DFT models for particle reactivity: LANL, Free Radical 
scavenging MEAs; enhanced oxygen free radical elimination using size-optimized doped ceria 
nanoparticles: LANL & UNM 
 
•Development and testing of fuel cells using ultra-low loading, high activity PGM catalysts-Validation 
of advanced concepts.  Fuel cell testing  of low-loading Pt carbon nanowire support derived from 
molecular templated polypyrrole: LANL & Ballard 
•IMPACT: This project will help lower the cost and the precious metal loading of 
PEM fuel cells and improve catalyst durability 

Project Objectives – Relevance- Collaborations 3 
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Approach: Ceria & Doped Ceria additives for Improving Durability 

• Cerium cation exchanged membranes are currently used to stabilize PEMs 
– leaching observed from the membranes  

• Ceria nanoparticles offer a relatively acid stable peroxide decomposition catalyst 
• However, free radical formation is also destructive 

– Characterized relative decomposition/formation rates (right) 
• Determine how chemical substitution changes ceria free radical scavenging properties 

4 

• Problem: Fuel cell degradation rates are higher at low PGM loadings-increased  free 
radical generation results in more ionomer attack 

• Previously: Originally developed ceria impregnated carbon supports, switched to additives 
• Progress: Controlled synthesis of ceria crystallite size.  Determined peroxide decomposition and 

free radical generation rates for CeO2, Gd-CeO2  Pr-CeO2and Zr-CeO2.  Performing OCV tests and 
accelerated stress tests of fuel cells  w/ and w/o ceria. 

Pt 

H2O2 

HO• 

Peroxide generation and degradation 
into  free radicals  that attack the 
carbon support and PEM 

CeO2-x 

CeO2-x 
CeO2-x 

Ceria Ce3+ / Ce4+ ratio varies with crystallite size 
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Cerium Oxide Nanoparticles for Stabilization 
• Cerium ions are known to be both a good 

peroxide decomposer and a good radical 
scavenger1  But: 

– ions migrate and leach out of fuel cells 
– Cerium oxide nanoparticles slowly 

dissolve 
 

• Rate of peroxide decomposition increases 
with decreasing particle size, as does Ce+3 
concentration 

 

– Ce3+ larger ionic radii and oxygen 
vacancy creation  decrease surface 
energy of particle 

 

• Is there an optimal size? 
– Does the increasing surface tension of 

small particles change the energetics 
of the Ce (IV) to Ce(III) reactions? 

 
• How does doping Ceria affect selectivity, 

rate & particle stability? 
– Gd3+, Zr4+,Pr3+,4+ 

 
 
 
 

 Karakoti, Chem. Soc. Rev., 39, 4422, 2010 
T X T Sayle, S.C. Parker and D Sayle, Chem. Commun. 2004, 2438-2439 
Lubomirsky,http://www.weizmann.ac.il/materials/igorl/Inelastic-effects 

Ce+4 + H2O2 ⟶  Ce+3 + HOO• + H+  

Ce+4 + HOO•  ⟶ Ce+3 + O2 + H+  

Ce+3 + HOO• + H+ ⟶ Ce+4 + H2O2  

For Cerium ions in Solution 

Karakoti et al. 
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Ceria nanoparticle reconstruction Gd doping creates vacancies 
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Selectivity for Free Radical Production Versus Particle Size 6 

Increasing free radical yield 

Increasing peroxide 
decomposition rate 

• Free radical generation measured using Carboxyfluorescein luminescence 
• Peroxide decomposition rate measured by oxygen gas evolution rate 
• Rates are normalized to surface area measured by gas adsorption 
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Accelerated Stress Test: Small Ceria Particles Added to Cathode 

• Black dots- no particles added to non-stabilized MEA 
• 5nm ceria nanoparticles (2 w/o) do not provide MEA 

stabilization despite their high surface area 
–Too many free radicals are produced by the decomposition 

of peroxide (previous slide) 
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Accelerated Stress Test: Medium Ceria Particles Added to Cathode 

•  7nm  particles provide good initial stabilization 
• Over time they get smaller via dissolution causing increased 

free radical generation 
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Accelerated Stress Test: Large Ceria Particles Added to Cathode 

• Red 37nm particles 
• Black- no particles 
• Degradation reduced~5X 
• Relatively large particles do not have much surface area  
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Effects of Pr Doping on Ceria Performance 
Selectivity-1 vs. Peroxide Decomposition 

CeO2 
Ce0.95Pr0.5O2 
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5 % Pr doping generally decreases free radical production but size results 
show scatter due to varies surface segregation of dopant, small sizes still 
generate significant amounts of free radicals 
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Effects of Gd Doping on Ceria Performance 

CeO2 
Ce0.95Gd0.5O2 

Selectivity-1 vs. Peroxide Decomposition 

11 

 5 % Gd doping of ceria results in high peroxide decomposition 
rates with lower free radical generation for most particle sizes 
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Effects of Zr Doping on Ceria Performance 12 

 15 % Zr doping of ceria results in high peroxide decomposition 
rates with low free radical generation for small particle sizes; 
Zr doping also improves nanoparticle acid stability  
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Ceria Migration studies at APS Argonne 13 

• MEAs were 
prepared with 2% 
ceria nanoparticles 
in cathode layer 
 

• AST OCV test 
performed 
 

• APS X-ray 
Fluorescence 
microprobe used to 
characterize Ce 
migration 
 

• 450 hr AST showed 
significant Ce 
migration from 
cathode to anode 
 

• Note Ce does not 
stay in membrane 
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 Molecular Templated Polypyrrole Nanowire Supports 
• Previous Effort 

– Process 
• Electropolymerize PPy nanowires 

onto a substrate 
• Pyrolyze 
• Platinize: sputter or impregnate 
• Hot press to membrane 

– Issues: 
• Achieving high Pt dispersions 
• Poor MEA performance (esp. 

Pt utilization & flooding) 
 

• Advantageous geometry of nanowire network supports 
– Tortuous branched networks maintain open pores but minimal “voids” 

• More free volume available for ionic and mass transport 
• Facilitates ionomer access and dispersion during fabrication 

– Enhances electronic conductivity (including “z” direction) 
• Minimizes electronically stranded catalyst 

• Comparison with other carbon tube/fiber/wire support options 
– Nanotubes/fibers (vapor grown): expensive, not branched 
– Polyaniline nanowires: easily made, but pyrolyze poorly 
– Polypyrrole nanowires: readily graphitize 

• Synthesis by potentially low-cost “soft” template processes 
• Good results with Heparin:Methylene Blue soft template (Wei et al., Synth. Met. 160 (9–10), 849-854 

(2010)) 
– Some control of fiber diameter possible by varying the Hep:MB ratio 

500 nm 

• New Direction 
– Process 

• Bulk synthesis of PPy nanowires 
• Pyrolyze to form powder 
• Platinize using polyol process 
• Prepare catalyst ink 
• Coat decals (or membrane) 
• Hot-press 

– Advantages 
• Conventional MEA manufacture 
• Greatly improved MEA performance 

 
 

Electropolymerized PPy nanowires 

“Tetrapod” Catalyst Structure 
 Lee et al., Angew. Chem. Int. Ed., 

52, 1026 (2013) 
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PPy nanostructures w/ various templates 

Heparin 

Na+ Alginate 
(food grade) 

ι-Carrageenan 
(food grade) 

 

λ-Carrageenan 
(food grade) 

 

50% methoxylated 
(0% is polygalacturonic acid) 

Pectin  
(low methoxyl, 

+ maltodextrin) 

Starch 

4 µm 

2 µm 

2 µm 1 µm 

1 µm 

1 µm 

2(–)/ring 

0(–)/ring 

1(–)/ring 

<1(–)/ring 

1(–)/ring 

1.5(–)/ring 

Methylene Blue 
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 Dye Templating Functionality 

*Fine,  fibers obtained when used in combination with pectin 

Neutral Red 

Key functionality for templating wires: sulfur heteroatom at position 10 

16 
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Milestone: Catalyst Scaleup for Ballard 
Catalyst for Ballard: 
 A total of 1.2 g sent 
 High nanowire surface area, 20-30 nm width 
 Highly graphitic C + 10% N content XRD: 

 a=0.24nm, c= 1.02nm,high amplitude for in 
plane peaks 

 Order parameter ~ 1.3 nm 
•  ~ 90 m2/g 

 14wt% Pt catalyst  
• Modified polyol process 
• High Pt Dispersion 

• ~ 2 nm-3 nm particles 
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PPy 

• 1.2 g of high quality catalyst been sent to Ballard for FC testing 
• The pyrolyzed polypyrrole, Cx Ny nanowires formed using the low cost, two-part carrageenan plus 

methylene blue soft template   
• Surface area is 90 m2/g, about 25% higher than previously reported, fiber diameter of about 25 nm.   

 
• EDX & CHNO analysis results indicate a N content of 6-12% despite the relatively high pyrolysis 

temperature of 1000˚C.   
• XRD & TEM (ORNL) indicates 2-3 nm Pt particle size 

PPy to Pt-PPPy Nanowire Catalysts Scale Up 

Pyrolysis: 1000˚C, 1h 
~ 50% wt loss 
~ 90% C- 10% N  
Highly graphitic structure 
No sulfur detected 

Platinization: polyol process 
13.5 wt% Pt: surface 
loading~ 3x 20%Pt/C 
2.6 nm particles (TEM)  

Molecular Template Dye/carbohydrate 
polymerization of PPy 
Metal-free ammonium persulfate 
oxidative polymerization forms 
nanowires 
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Pt-PPPy Nanowires 

TKK (50%Pt/C) 

BASF (20%Pt/C) 

(111) (200) 
(220) (311) 

Support Loadings: Comparisons with Commercial Catalysts 

Catalyst Pt 
(wt%) 

Support 
SA 

(m2/g) 

Support 
Loading  
(mgPt/

m2)* 

Pt 
particle 

size 
(nm) 

Pt-PPPy 14 90 1.81 2.4 

BASF 
20%Pt/

XC72 
20 250 1.00 3. 

TKK-
TEC10E

50E 
50 800 1.25 2.8 

*support loading = 1000*(wt%Pt)/(wt%Support*SupportSA)                       

19 
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Mass Activity and Specific Activity of Pt/PPPy 

Sample 
Mass Activity 
(mA/g) 

Specific Activity 
(mA/cm2) 

Pt/PPPy (100 µg/cm2) 

Pt/PPPy (500 µg/cm2) 

LANL’s data* 

0.15 

0.067 

0.19 

0.069 

0.078 0.085 

Pt/Graphitized C (100 µg/cm2) 0.072 0.20 

ECSA 
(m2/g) 

82 

84 

40 

Estimated 
Pt diameter 
(nm) 

3.4 

3.3 

6.5 

91 3.1 

1 Applied Catalysis B: Environmental, 56, 9 (2005) 

(0.23) 

(0.20) 

(0.16) (0.40) 

(0.25) 

(0.29) 

 As expected, the mass transport corrected activities are much higher vs. the 
uncorrected values. 

 The Pt/PPPy sample has a slightly higher mass activity, but lower specific 
activity vs. the Pt/Graphitized C catalyst. 

  LANL’s data performed in H2SO4. 

(Mass transport corrected values) 
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MEA Composition and AST Conditions 

LANL Pt/PPPy MEA 

Baseline MEA 

Cathode Pt Loading 
(mg/cm2) 

0.055 0.1 

Anode Pt Loading 
(mg/cm2) 

0.075 0.1 

MEA Composition 

AST Conditions 

Vo
lta

ge
 

Time 

1.0 V 

0.6 V 0.6 V 

60 s 

30 s 30 s 

Temperature: 80 oC 

Anode/Cathode Humidity: 100 % 
Diagnostics at: BOL, 700, 1400, 2100, 4700 cycles 

Anode/Cathode Pressure: 5 psig 

21 
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MEA Performance of Pt/PPPy vs. Pt/C Baseline at 100% RH 

 At 100%RH, the preliminary data suggest that the Pt/PPPy showed similar 
performance to the Pt/Graphitized C catalysts with similar loading. 
 As expected, the low Pt loaded MEAs showed lower performance than the MEA 

with 0.4 mg/cm2 Pt at the cathode. 
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Performance at 60% RH 

 At low (60%) RH, the PPPy-based catalyst shows higher performance than 
similarly loaded Pt/Graphitized C, and comparable performance to the 0.4 
mg/cm2 Pt-loaded MEA at high current densities. 
 It is possible that the PPPy structure helps to manage water in the catalyst 

layer, but further work is required to verify this. 
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Results of AST Cycling (0.6-1.0 V) 

 The performance loss of the Pt/PPPy catalyst was found to be similar to 
that of Pt/Graphitized C following a voltage cycling AST. 

Polarization Curves Under Air (Pt/PPPy)
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Milestones & No-Go Decisions 
•  Milestones: 

– Nov 2013 
• Accomplish large batch synthesis of novel nanowire PGM catalysts- LANL  completed 
• Complete ceria nanoparticle migration study using APS synchrotron X-ray microprobe LANL 

& UNM completed 
–  Feb 2014 

• Complete oxygen  free radical decomposition studies for Pr, Gd and Zr doped Ceria – LANL 
completed, 

• Complete AST testing of MEAs incorporating ceria free-radical scavengers – LANL & Ballard  
completed,  
 

– March 2014 
• Complete characterization (XRF, SEM, HRTEM, XRD,) of LANL Catalyst materials  delivered to 

Ballard–LANL & ORNL  completed 
• Perform  fuel cell testing using novel nanowire PGM catalysts to demonstrate 50 cm2 single 

cell performances with << 0.1 mg Pt/cm2 that equal or exceed conventional MEAs with 0.2 
mg Pt/cm2 – LANL & Ballard  achieved 
 

• No-Go Decisions 
– Ceria/carbon composite Pt supports – <~8 nm ceria counterproductive 
– Pt Pd nanoplatelet catalyst development-could not reduce particle size 
– Pt3Sc & Pt3Y catalysts  - ORNL microanalysis indicated HSA materials were oxides 
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Summary 
• Ceria free-radical scavengers 

– Identified particle size range that maximizes scavenging 
– Identified dopants that improve free radical elimination 
– Structurally characterized ceria and doped cerias 
–  FC OCV testing results meet durability technical target 

• 2017 Durability Target: OCV hold 500 h  
–  < 20 mA/cm2 H2 X-over (achieve < 5 mA/cm2) 
–  < 20 % OCV loss (achieve about 10%) 

– AST testing completed 
– Ce migration study completed 

• Pt-PPPy nanowire catalysts 
–  Successful scale up of low-cost soft-template PPy nanowire synthesis process 
– Achieved reproducible high Pt dispersions with high surface loadings on highly graphitic 

surfaces in repeated large batches 
– Completed fuel cell testing; low loading low humidity performance is enhanced compared 

to conventional carbons 
 

• Conclusions: Low loading Pt supported on novel nanowire structured carbon catalyst 
show promise in improving performance in low PGM loading fuel cells thus lowering 
cost.  

• Doped Ceria nanoparticle additives of the right size and composition improve 
lifetimes of low loading fuel cells  
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Proposed Future Work 

• Ceria free-radical scavenger additives: 
– FC lifetime OCV testing and performance testing with Zr and Gd-doped cerias 
– Additions of doped ceria to Pt nanowire catalysts and performance testing 

• Pyrolyzed PPy nanowire supports: 
– Synthesize finer nanowires 
– Optimization of pyrolysis process to maximize durability and Pt dispersion 
– Enhanced PPPy nanowire functionality via heteroatom doping 
– Catalyst layer composition and processing optimization 
– Comprehensive Fuel cell and full suite accelerated stress testing 
– Scale up catalyst production to stack testing quantities 
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