The Science And Engineering of Durable Ultralow PGM Catalysts

Fernando Garzon Los Alamos National Laboratory June 2014

FC010

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: 03/2010
- Project end date: 03/2014
- Percent complete: 100%

PGM total loading:	0.125 mg/cm ² (2017 target)
PGM total content:	0.125 g/kW (2017 target)
Loss in initial catalytic activity	< 40% mass activity loss (2017 target)
Electrocatalyst support stability:	< 10 % mass activity loss (2017 target)
Durability: OCV hold 500 h	< 20 mA/cm ² H ₂ X-over < 20 % OCV loss (2017)
Durability with cycling:	5000 h (2017 target)

Budget

•FY13 DOE Funding: \$1,100K
•Planned FY14 DOE Funding: \$275K
•Total Project Value: \$6,000K
•Cost Share Percentage (if applicable): 9%

Barriers

- DURABILITY: Free-radicals degrade membranes and catalyst supports
- COST: Unique catalyst microstructures and additives improve utilization and durability of ultralow precious metal loadings that reduce cost
- PERFORMANCE: More efficient catalyst layer structures improve transport properties and performance

Partners

- Ballard Fuel Cells, UNM, UD
- LANL

Project Objectives – Relevance- Collaborations

•Development of durable, high mass activity Platinum Group Metal cathode catalysts -enabling lower cost fuel cells - *Synthesis and characterization of Low PGM catalysts:* <u>LANL & UD</u> Low loading Pt on carbon-nitrogen nanowires: <u>LANL & ORNL</u>

•Elucidation of the interconnected relationships between PGM, nucleation, growth catalyst shape, particle size and activity will help design better catalysts - *Pt nucleation and dispersion on carbon research enabled well-dispersed Pt deposition on novel carbon nanowires:* <u>LANL & UNM</u>

•Optimization of the cathode electrode layer to maximize the performance of PGM catalystsimproving fuel cell performance and lowering cost – *Nanowire supports: LANL, Advanced microstructural catalyst layer model development- provided information on optimization of support geometry: Ballard*

•Understanding the performance degradation mechanisms of high mass activity cathode catalysts – provide insights to better catalyst design. *DFT models for particle reactivity: LANL, Free Radical scavenging MEAs; enhanced oxygen free radical elimination using size-optimized doped ceria nanoparticles: LANL & UNM*

•Development and testing of fuel cells using ultra-low loading, high activity PGM catalysts-Validation of advanced concepts. *Fuel cell testing of low-loading Pt carbon nanowire support derived from molecular templated polypyrrole: LANL & Ballard*

•IMPACT: <u>This project will help lower the cost and the precious metal loading of</u> <u>PEM fuel cells and improve catalyst durability</u>

Approach: Ceria & Doped Ceria additives for Improving Durability

- **Problem:** Fuel cell degradation rates are higher at low PGM loadings-increased free radical generation results in more ionomer attack
- **Previously**: Originally developed ceria impregnated carbon supports, switched to additives
- Progress: Controlled synthesis of ceria crystallite size. Determined peroxide decomposition and free radical generation rates for CeO₂, Gd-CeO₂ Pr-CeO₂ and Zr-CeO₂. Performing OCV tests and accelerated stress tests of fuel cells w/ and w/o ceria.

Ceria Ce^{3+} / Ce^{4+} ratio varies with crystallite size

Peroxide generation and degradation into free radicals that attack the carbon support and PEM

- Cerium cation exchanged membranes are currently used to stabilize PEMs
 - leaching observed from the membranes
- Ceria *nanoparticles* offer a relatively acid stable peroxide decomposition catalyst
- However, free radical formation is also destructive
 - Characterized relative decomposition/formation rates (right)
- Determine how chemical substitution changes ceria free radical scavenging properties

Cerium Oxide Nanoparticles for Stabilization

$$Ce^{+4} + H_2O_2 \longrightarrow Ce^{+3} + HOO_{\bullet} + H^{-3}$$

 $Ce^{+4} + HOO \bullet \rightarrow Ce^{+3} + O_2 + H^+$

$$Ce^{+3} + HOO \bullet + H^+ \longrightarrow Ce^{+4} + H_2O_2$$

For Cerium ions in Solution

Karakoti et al.

Ceria nanoparticle reconstruction Gd doping

Karakoti, Chem. Soc. Rev., 39, 4422, 2010

n Gd doping creates vacancies .

 Cerium ions are known to be both a good peroxide decomposer and a good radical scavenger¹ But:

- ions migrate and leach out of fuel cells
- Cerium oxide nanoparticles slowly dissolve
- Rate of peroxide decomposition increases with decreasing particle size, as does Ce⁺³ concentration
 - Ce³⁺ larger ionic radii and oxygen vacancy creation decrease surface energy of particle
- Is there an optimal size?
 - Does the increasing surface tension of small particles change the energetics of the Ce (IV) to Ce(III) reactions?
- How does doping Ceria affect selectivity, rate & particle stability?

T X T Sayle, S.C. Parker and D Sayle, *Chem. Commun.* 2004, 2438-2439 Lubomirsky, http://www.weizmann.ac.il/materials/igorl/Inelastic-effects

- Free radical generation measured using Carboxyfluorescein luminescence
 - Peroxide decomposition rate measured by oxygen gas evolution rate
 - Rates are normalized to surface area measured by gas adsorption

10

5.4 nm

Rate of 0.70 μ g F⁻/hr² Rate of 0.23 μ g F⁻/hr²

- Black dots- no particles added to non-stabilized MEA
 Energy corrispondenticles (2, w/o) do not provide MEA
- 5nm ceria nanoparticles (2 w/o) do not provide MEA stabilization despite their high surface area
 - Too many free radicals are produced by the decomposition of peroxide (previous slide)

Rate of 0.40 μg F⁻/hr² Rate of 0.25 μg F⁻/hr²

- 7nm particles provide good initial stabilization
- Over time they get smaller via dissolution causing increased free radical generation

Accelerated Stress Test: Large Ceria Particles Added to Cathode

Rate of 0.11 μ g F⁻/hr² Rate of 0.06 μ g F⁻/hr²

- Red 37nm particles
- Black- no particles
- Degradation reduced~5X
- Relatively large particles do not have much surface area

Effects of Pr Doping on Ceria Performance

Selectivity⁻¹ vs. Peroxide Decomposition

5 % Pr doping generally decreases free radical production but size results show scatter due to varies surface segregation of dopant, small sizes still generate significant amounts of free radicals

Effects of Gd Doping on Ceria Performance

Effects of Zr Doping on Ceria Performance

15 % Zr doping of ceria results in high peroxide decomposition rates with low free radical generation for <u>small particle sizes;</u> Zr doping also improves nanoparticle acid stability

Ceria Migration studies at APS Argonne

- MEAs were prepared with 2% ceria nanoparticles in cathode layer
- AST OCV test performed
- APS X-ray Fluorescence microprobe used to characterize Ce migration
- 450 hr AST showed significant Ce migration from cathode to anode
- Note Ce does not stay in membrane

power to change the world

os Alamos.

NATIONAL LABORATORY

NEW MEXICO

UNIVERSITY of DELAWARE

Molecular Templated Polypyrrole Nanowire Supports

• Previous Effort

- Process
 - Electropolymerize PPy nanowires onto a substrate
 - Pyrolyze
 - Platinize: sputter or impregnate
 - Hot press to membrane
- Issues:
 - Achieving high Pt dispersions
 - Poor MEA performance (esp. Pt utilization & flooding)

Electropolymerized PPy nanowires

New Direction

- Process
 - Bulk synthesis of PPy nanowires
 - Pyrolyze to form powder
 - Platinize using polyol process
 - Prepare catalyst ink
 - Coat decals (or membrane)
 - Hot-press
- Advantages
 - Conventional MEA manufacture
 - Greatly improved MEA performance
- Advantageous geometry of nanowire network supports
 - Tortuous branched networks maintain open pores but minimal "voids"
 - More free volume available for ionic and mass transport
 - Facilitates ionomer access and dispersion during fabrication
 - Enhances electronic conductivity (including "z" direction)
 - Minimizes electronically stranded catalyst
- Comparison with other carbon tube/fiber/wire support options
 - Nanotubes/fibers (vapor grown): expensive, not branched
 - Polyaniline nanowires: easily made, but pyrolyze poorly
 - Polypyrrole nanowires: readily graphitize
 - Synthesis by potentially low-cost "soft" template processes
 - Good results with Heparin: Methylene Blue soft template (Wei et al., Synth. Met. 160 (9–10), 849-854 (2010))
 - Some control of fiber diameter possible by varying the Hep:MB ratio

"Tetrapod" Catalyst Structure Lee et al., Angew. Chem. Int. Ed., 52, 1026 (2013)

PPy nanostructures w/ various templates

Due	Position on anthracene molecule				Pogult	
Dye	3	6	7	9	10	Kesun
Methylene Blue	$-N(CH_3)_2$	$-N(CH_3)_2$	С	Ν	S	Fibers
Neutral Red	$-N(CH_3)_2$	$-NH_2$	-CH ₃	Ν	Ν	Globules
Basic Blue 3	$-N(CH_2CH_3)_2$	$-N(CH_2CH_3)_2$	С	Ν	0	Globules
Pyronin Y	$-N(CH_3)_2$	$-N(CH_3)_2$	С	С	0	Globules*
Toluidine Blue O	$-N(CH_3)_2$	$-NH_2$	-CH ₃	Ν	S	Fibers
Azure C	-NHCH ₃	$-NH_2$	C	N	S	Fibers

*Fine, fibers obtained when used in combination with pectin

Key functionality for templating wires: sulfur heteroatom at position 10

Milestone: Catalyst Scaleup for Ballard

Catalyst for Ballard:

- A total of 1.2 g sent
- High nanowire surface area, 20-30 nm width
- Highly graphitic C + 10% N content XRD:
 - *a*=0.24nm, *c*= 1.02nm, high amplitude for in plane peaks
 - Order parameter ~ 1.3 nm
 - ~ 90 m²/g
- 14wt% Pt catalyst
 - Modified polyol process
 - High Pt Dispersion
 - ~ 2 nm-3 nm particles

PPy to Pt-PPy Nanowire Catalysts Scale Up

- 1.2 g of high quality catalyst been sent to Ballard for FC testing
- The pyrolyzed polypyrrole, C_x N_y nanowires formed using the low cost, two-part carrageenan plus methylene blue soft template
- Surface area is 90 m²/g, about 25% higher than previously reported, fiber diameter of about 25 nm.
- EDX & CHNO analysis results indicate a N content of 6-12% despite the relatively high pyrolysis temperature of 1000°C.
- XRD & TEM (ORNL) indicates 2-3 nm Pt particle size

Molecular Template Dye/carbohydrate polymerization of PPy Metal-free ammonium persulfate

oxidative polymerization forms

Pyrolysis: 1000°C, 1h ~ 50% wt loss ~ 90% C- 10% N Highly graphitic structure No sulfur detected

Platinization: polyol process 13.5 wt% Pt: surface loading~ 3x 20%Pt/C 2.6 nm particles (TEM)

UNIVERSITY of DELAWARE

Catalyst	Pt (wt%)	Support SA (m²/g)	Support Loading (mgPt/ m ²)*	Pt particle size (nm)	15
Pt-PPPy	14	90	1.81	2.4	10
BASF 20%Pt/ XC72	20	250	1.00	3.	5
TKK- TEC10E 50E	50	800	1.25	2.8	

support loading = 1000(wt%Pt)/(wt%Support*SupportSA)

DGE

Mass Activity and Specific Activity of Pt/PPy²⁰

	Sample	Mass Activity (mA/g)	Specific Activity (mA/cm ²)	ECSA (m²/g)	Estimated Pt diameter (nm)
	Pt/PPPy (100 μg/cm²)	0.15 <mark>(0.23)</mark>	0.19 <mark>(0.29)</mark>	82	3.4
	Pt/PPPy (500 μg/cm²)	0.067 <mark>(0.20)</mark>	0.069 <mark>(0.25)</mark>	84	3.3
Pt/	Graphitized C (100 µg/cm²)	0.072 <mark>(0.16)</mark>	0.20 (0.40)	40	6.5
	LANL's data*	0.078	0.085	91	3.1

(Mass transport corrected values)

- As expected, the mass transport corrected activities are much higher vs. the uncorrected values.
- The Pt/PPPy sample has a slightly higher mass activity, but lower specific activity vs. the Pt/Graphitized C catalyst.
- LANL's data performed in H₂SO₄.

¹ Applied Catalysis B: Environmental, 56, 9 (2005)

MEA Composition

	Cathode Pt Loading (mg/cm ²)	Anode Pt Loading (mg/cm ²)
Baseline MEA	0.055	0.1
LANL Pt/PPPy MEA	0.075 21	0.1

AST Conditions

Temperature: 80 °C

Anode/Cathode Pressure: 5 psig

Anode/Cathode Humidity: 100 %

Diagnostics at: BOL, 700, 1400, 2100, 4700 cycles

MEA Performance of Pt/PPPy vs. Pt/C Baseline at 100% RH

- At 100%RH, the preliminary data suggest that the Pt/PPPy showed similar performance to the Pt/Graphitized C catalysts with similar loading.
- As expected, the low Pt loaded MEAs showed lower performance than the MEA with 0.4 mg/cm² Pt at the cathode.

- At low (60%) RH, the PPPy-based catalyst shows higher performance than similarly loaded Pt/Graphitized C, and comparable performance to the 0.4 mg/cm² Pt-loaded MEA at high current densities.
- It is possible that the PPPy structure helps to manage water in the catalyst layer, but further work is required to verify this.

Results of AST Cycling (0.6-1.0 V)

 The performance loss of the Pt/PPPy catalyst was found to be similar to that of Pt/Graphitized C following a voltage cycling AST.

• Milestones:

- -Nov 2013
 - Accomplish large batch synthesis of novel nanowire PGM catalysts- LANL *completed*
 - Complete ceria nanoparticle migration study using APS synchrotron X-ray microprobe LANL & UNM completed
- Feb 2014
 - Complete oxygen free radical decomposition studies for Pr, Gd and Zr doped Ceria LANL *completed,*
 - Complete AST testing of MEAs incorporating ceria free-radical scavengers LANL & Ballard completed,

-March 2014

- Complete characterization (XRF, SEM, HRTEM, XRD,) of LANL Catalyst materials delivered to Ballard–LANL & ORNL completed
- Perform fuel cell testing using novel nanowire PGM catalysts to demonstrate 50 cm² single cell performances with << 0.1 mg Pt/cm² that equal or exceed conventional MEAs with 0.2 mg Pt/cm² – LANL & Ballard *achieved*

No-Go Decisions

- Ceria/carbon composite Pt supports <~8 nm ceria counterproductive</p>
- Pt Pd nanoplatelet catalyst development-could not reduce particle size
- Pt₃Sc & Pt₃Y catalysts ORNL microanalysis indicated HSA materials were oxides

Summary

- Ceria free-radical scavengers
 - Identified particle size range that maximizes scavenging
 - Identified dopants that improve free radical elimination
 - Structurally characterized ceria and doped cerias
 - FC OCV testing results meet durability technical target
 - 2017 Durability Target: OCV hold 500 h
 - < 20 mA/cm² H₂ X-over (achieve < 5 mA/cm²)
 - < 20 % OCV loss (achieve about 10%)</p>
 - AST testing completed
 - Ce migration study completed
- Pt-PPPy nanowire catalysts
 - Successful scale up of low-cost soft-template PPy nanowire synthesis process
 - Achieved reproducible high Pt dispersions with high surface loadings on highly graphitic surfaces in repeated large batches
 - Completed fuel cell testing; low loading low humidity performance is enhanced compared to conventional carbons
- Conclusions: Low loading Pt supported on novel nanowire structured carbon catalyst show promise in improving performance in low PGM loading fuel cells thus lowering cost.
- Doped Ceria nanoparticle additives of the right size and composition improve lifetimes of low loading fuel cells

Proposed Future Work

- Ceria free-radical scavenger additives:
 - FC lifetime OCV testing and performance testing with Zr and Gd-doped cerias
 - Additions of doped ceria to Pt nanowire catalysts and performance testing
- Pyrolyzed PPy nanowire supports:
 - Synthesize finer nanowires
 - Optimization of pyrolysis process to maximize durability and Pt dispersion
 - Enhanced PPPy nanowire functionality via heteroatom doping
 - Catalyst layer composition and processing optimization
 - Comprehensive Fuel cell and full suite accelerated stress testing
 - Scale up catalyst production to stack testing quantities

