

Dimensionally Stable High Performance Membranes

<u>Cortney Mittelsteadt</u> (P.I., Presenter) Avni Argun Castro Lacier Jason Willey

> Giner, Inc. June 18, 2014

FC 036

Overview

Timeline

- Project Start Date
- Project End Date

10/01/2010 06/30/2014

Barriers addressed

- A. Durability
- B. Cost
- C. Performance

Technical Targets (DOE 2017 Targets)

- $0.02 \ \Omega.cm^2$ at 1.5 kPa H₂O Air inlet
- $<$20/m^2$
- > 5000 h lifetime, >20,000 RH Cycles

Budget

- Total Project Funding to Date: \$1.41M
- Total Project Value: \$1.52
- Cost Share %: N/A

Partners

- Impattern Technologies
- NIL Technology

Overview

- Why Dimensionally Stable Membranes (DSM[™])
- Phase III Results
- Go/No-Go after each year
 - YEAR 1 Go/No-Go decision: Has scalable micro-molding method been generated to produce the desired DSMs[™]?
 - YEAR 2 Go/No-Go decision: Does selected method generate DSM[™] based MEAs that meet DOE targets for cost, performance and durability? Is it feasible to scale up the bench manufacturing process?
- Milestones
 - 4" diameter batch-produced DSMsTM (achieved)
 - 11" x 11" roll-produced DSM^{TM} (pending)

Relevance: Three Dimensional Supports

Advantages:

GINER

- Many commercially available
 - ePTFE
 - Made in 10k m² in a batch
- Ionomer is added by solution
- Roll to Roll processing

Disadvantages:

- Making thin supports for some materials
- Support/Solution compatibility
- Getting high ionomer content
 - High wt% dispersion
 - High void volume

80% Void

Film on top & bottom

20% support 20% ionomer

50% ionomer 50% support. Conductivity penalty = 2*tortuosity

Relevance: Giner's 2D DSM[™] Solution

• Giner had the most *technical* success with two dimensional stable membranes

GINER

- Laser drilling is not practical due to high cost
- Giner is already using DSMs for manufacturing of large scale electrolyzers.

Relevance: DSMTM Background

• DURABILTY

ANE

- Lack of Substrate Ionomer/Ionomer
 Interface Does not lead to delamination
- FCTT RH Cycling Metric 20k Cycles 80°C shown

• PERFORMANCE

 Very Small "Blind Spot" Loss at Typical Aspect Ratios

CONDUCTIVITY

- 25-30% Penalty
- (~50% for expanded PTFE)

• DIMENSIONAL STABILITY

- Nearly Eliminates all x-y swelling

Relevance: Giner's DSMTM Success

Large Scale Electrolyzer For Energy Storage

- 290 cm² Platform

GINER

- World Best Efficiency @ 1500 mA/cm² (~90%)
- Confirmed by NREL

Approach: Criteria for DSMTM

Manufacturing

- **Design:** 8-10 µm thick support structures with 8-20 µm diameter holes and 50% porosity to accommodate low EW ionomers.
- **Process:** Flexible materials with high tensile strength to handle in a roll-to-roll system without tearing and breaking.
- **Performance:** Negligible expansion in the XY plane and preserved modulus when exposed to wet/dry cycles.
- **Durability:** High durability to survive 20,000 wet/dry cycles without crack failure.
- **Stability:** High-temperature stability in the range of -30 to 120°C

Optimized DSM[™] support design:

- Close hexagonal packing
- 8-10 μm thickness
- 20 µm hole diameter
- 50% open area

Approach: Choice of Materials

- Mechanical properties of ionomers compared to the support materials.
- PTFE not optimal, Kapton[®] (polyimides) ideal, other engineering plastics would also work nearly as good.

Mechanical properties In water, at 80°C	Tensile Strength (MPa)	Elastic Modulus (MPa)	Elongation at Break (%)
PTFE / ePTFE	10-20	~500	200-300
Nation® 112	6.1	21.4	94.1
Fumion® 830EW	2.3	11.9	12.9
Kapton®	231	1377	72
Polysulfone (UDEL)	70.3	2480	50-100

GINER

Approach: Program Objectives

- Develop a high-throughput and costeffective process for fabrication of DSMTM
- Reduce membrane thickness by incorporating a microporous support layer.
- Address key durability, cost, performance barriers related to fuel cell systems.

Achievements: Identification of DSMTM Fabrication Methods

- Giner investigated various approaches and identified scalable and cost-effective fabrication routes.
- DSMTM supports and composite DSMTM membranes were fabricated at 4" diameter pilot scale
- Giner pursued the following three fabrication routes:

Technique	Description	Pros	Cons
Phase Inversion Solvent Casting	Precipitation of polymers on a mold using a non-solvent.	Well defined materialPhase II results	Waste solventFilm shrinkage
UV Microreplication	UV curing of polymers between mold and substrate	Rapid film formationEasy roll integration	High material riskR&D cost
Mechanical Deformation	Mechanical deformation via robust molds	Proven materialsProven roll integration	 Ragged features

Each path starts with the same first step: Design of the mold

GINER Achievements: Mold Fabrication

- Master and replica nickel molds
 - 4" diameter round molds replicated
 - 20 μm diameter, 10 μm feature height, 50% density
 - Nickel shims
- Easy to scale up to 24" x 36"

- Mold properties (nickel pillars)
 20 μm pillar diameter, 10 μm pillar
 height, 50% density
- SEM images: Cross-sectional and tilted of micromold pillars

Achievements: Phase Inversion Process

- A polymer solution cast on a mold and precipitation using a non-solvent
- Mechanical properties are inferior due to microporosity.
- Due to the complications with solvent removal, the need for post-treatment, and non-ideal mechanical properties, **Giner stopped pursuing this approach**

<u>HINER</u>

Note the microporosity of the DSM[™] support

Achievements: UV Microreplication

• DSM supports have been successfully fabricated and released from molds with minimal residual layers.

Achievements: UV Microreplication

- Upon optimization of the processing conditions it is possible to obtain robust DSM supports
- Despite the success of this method, the base UV curable polymers are still not adequate mechanically.

DSM support on an ionomer film.

Free-standing DSM support

Achievements: Mechanical Deformation

- The best scalable route with proven materials; low project cost in R2R
- Initial investigation with a square-row arrangement (pilot scale).
- Improved process with high porosity, issues of severe tapering
- Other problems with selection of suitable carrier, poor release, etc.
- The process also caused extremely rugged features

- Giner has substantially improved this approach and is currently pursuing it "in-house"
- Transitioned to hexagonal geometry for better mechanicals

Achievements: Mechanical Deformation

• Giner has successfully fabricated DSMTM supports both on carriers and as free-standing films.

DSM support on Carrier

Free standing DSM support

Achievements: Mechanical Deformation

• Using the route, it is possible to form the mechanical support followed by application of the ionomer.

GINER

- A close-up SEM image of a 20 µm thick DSMTM with its constituents:
 - the support
 - the ionomer

Achievements: High-volume Cost Projection for DSMTM Fabrication

- Giner investigated various scalable and cost-effective routes.
- Cost comparison of
 - Laser drilling

GINER

- Giner's current method
- Research "Roll-to-roll" method (late '14)

Projected DSMTM support cost : \$5/m²

(Ionomer incorporation included; the cost of the ionomer material extra)

Achievements: Summary

Three viable pathways were investigated in this Phase III Program

- Inversion Casting (Inactive)
 - Too many problems with process control
 - Intrinsic properties of inversion cast films are inferior
- UV Microreplication (Inactive)
 - Low ultimate cost ($< $20/m^2$)
 - Insufficient material properties
- Mechanical Deformation (Focus)
 - Best materials choices (thermoplastics)
 - Currently $50/m^2$, $<5/m^2$ for R2R
 - Yields the best performing DSMTM

6.8 µm

Future Work

- DSMTM provides real benefits for both fuel cells and electrolyzers
- Giner is in the process of forming Roll-to-Roll Films
 - Working with toll-coating partners.
- Giner's method provides:
 - Best materials choices for fuel cell and electrolyzer operation
 - Proven integration to roll-to-roll operation
 - Current target is $20/m^2$ (late '14), < 5 $/m^2$ for high volume R2R production

The current focus is on scaling-up the process. Goal is to develop the process as far as possible with suitable materials.

Collaborations

- The UMass- Amherst Nanoimprint Lithography Laboratory (Prof. Kenneth Carter)
- NIL Technology (Denmark)
- Impattern Technologies (Dr. Michael Watts)
- General Motors (Initial DSM[™] funding)

