

WØ₃ and HPA based systems for durable Pt catalysts in PEMFC cathodes

2014 DOE Hydrogen and Fuel Cells Program Review

John Turner

June 18th, 2014

FC084

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Start date: 05/01/2010
- End date: 04/30/2014
- Percent complete: 100%

Budget

- Total funding spent: \$2.9M
- Total Project value: \$2.9M
- Cost Share percentage: 9%

Barriers

- Durability
- Cost
- Performance

Partners

- S. George: UC Boulder
- A. Herring: CSM
- S. Hamrock: 3M
- K. Adjemian: NTCNA
- Tanaka Kikinzoku Kyogo (TKK)

Project lead – NREL

(John Turner, <u>Anne Dillon</u>,

Katie Hurst, Bryan Pivovar,

K.C. Neyerlin, Jason Zack, and Shyam Kocha)

Relevance: Objectives

Improve electrocatalyst, MEA durability, and activity through the use of Pt/WO_3 and Heteropoly Acid (HPA) modification of carbon support to approach automotive PEMFC activity (**0.44 mA/mg**_{Pt}) and durability targets (5000h/10y).

Enhance Pt anchoring to support

- Suppress loss in Pt ECA under load cycling operations
- Enhance electrocatalytic activity

Lower support corrosion

- Increased durability under automotive startup/shutdown operation.
- Suppress Pt agglomeration/electrode degradation

Simplify and lower system cost

Polymer Electrolyte Fuel Cell Degradation, Editors: Matthew M. Mench, Emin Caglan Kumbur, T. Nejat Veziroglu, Chapter 3, S. Kocha, Electrochemical Degradation: Electrocatalyst and Support Durability (2012)

Develop Accelerated Tests for Durability Support- Protocols

R&D AMERICAS

RDE Accelerated Test for Support Corrosion

	Nissan	NREL	DOE
Тетр	60°C	Room Temp	Room Temp
Scan Rate	500 mV/s	100 mV/s	1.2 V Hold
No of Cycles	5000 Cycles	6000 Cycles	No Cycles
Time to complete the test	~ 8 Hrs	~ 24 Hrs	~ 402 Hrs

Protocol Comparisons – Pt/C Results

- Nissan and NREL protocols result in comparable losses for ECA, i_s and i_m.
- Nissan protocol (60°C) takes only 8h due to higher temperature accelerant
- NREL protocol is conducted at RT and takes 24 h using low scan rate accelerant.

Approach

Pt/WOx Electrocatalysts

Accomplishments

Other oxides, carbide and nitrides were also screened.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

HWCVD Production of Tungsten Oxide Nanostructures

Synthesis at 150 Torr 4% O_2 in Ar, filament temperature ~ 2000°C.

300 °C

30 °C

30 °C 4 sequential depositions

Dramatic change in particle morphology
 Lower furnace temperature

Sequential depositions lead to rod growth

A.H. Mahan, P. A. Parilla, K.M. Jones and A.C. Dillon, Chem. Phys. Lett. 413 (2005) 88.

Controlling the stoichiometry of WO_x by subsequent oxidation in air.

Samples are heterogeneous

- Different oxide phases are made upon oxidation
- Sub-stoichiometric material should have higher conductivity
- The stoichiometry of WO_x may impact subsequent Pt deposition

Tungsten Oxide Wet Chemistry Synthesis

Pt Colloid Synthesis (outcome)

- A literature recipe* was modified significantly to synthesize Pt nanoparticles of controlled size by:
 - Decreasing the temperature to 80°C
 - Bubbling dilute CO into solution
 - Gradually adding 0.25M NaOH over 3h

*Wang, Y.; Ren, J.; Deng, K.; Gui, L.; Tang, Y. Chem. Mater. 2000, 12, 1622.

Tungsten Bronze Formation Interferes with Standard Electrochemical Surface Area Measurements Techniques

Cu UPD on Pt/WO_x Electrocatalysts

Adding carbon (graphite nanofibers – GNF) improves conductivity, but still far short of baseline

From NREL ALD

Challenges: Electronic Conductivity

- Oxides supports have low electronic conductivity
- Addition of carbon matrix enhances the overall conductivity
- 3 electron pathways
 - Contact point between Pt and support:
 RA
 - Electronic conductivity through the support: **RB**
 - Electronic conductivity through the added carbon matrix: **RC**
 - Coating of Nafion[®] ionomer on Pt and WO_x and C not shown: R_{Nafion}

Actual Micrograph RA, RB not addressed with GNF

Mass Activity of Pt/C vs. ALD Pt/WO_x

WOx based electrocatalysts did not meet Pt/C baseline activity

WO₃ Semiconductor Energetics

Strategy for Continuous Pt ALD Films Using W Adhesion Layer

Continuous film of Pt would help conductivity, but needs a continuous W adhesion layer. Attempted to make a W film via a hydrogen plasma, but didn't work for mesostructured WO₃

Results for Pt ALD on WO_x Particles in Plasma Reactor used for Flat Substrates

200 cycles - MeCpPt(IV)Me₃ with H₂ plasma at 120^oC

Attempt to produce a W film via a hydrogen plasma to make a continuous film of Pt, but didn't work for mesostructured WO_3 Pt particles are still the result.

Atomic Layer Deposition of Platinum Nanoparticles on Titanium Oxide and Tungsten Oxide Using Pt(hfac)₂ and Formalin as the Reactants

Virginia R. Anderson,¹ Noemi Leick,² Joel W. Clancey,¹ Katherine E. Hurst,³ Kim M. Jones,³ Anne C. Dillon³ and Steven M. George^{1,4}

¹Dept. of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, 80309; ²Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven; ³National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, Colorado, 80401; ⁴Dept. of Mechanical Engineering, University of Colorado, Boulder, Colorado, 80309

ACKNOWLEDGEMENTS

This work is dedicated to Dr. Anne C. Dillon who was a former student and collaborator. Her early passing took away a colleague with deep insight and infectious enthusiasm. This work was funded by the DOE under the EERE Fuel Cell Technology Program. We thank Dr. Andrew Cavanagh for X-ray photoelectron spectroscopy (XPS) sample analysis. We also appreciate useful conversations on Pt ALD with Dr. Layton Baker who is now at the Jet Propulsion Laboratory.

Corrosion Currents on Au disk (Corrected)

Results:

E (V vs. RHE)

- TiC is the worst. From the inset WC is also less than ideal, and TiN is questionable
- TiO₂, TaC, and WO₃ appear to be the best for corrosion resistance.

Pt/SnO₂ Electrocatalysts: SEM

Better dispersion

NATIONAL RENEWABLE ENERGY LABORATORY

Pt/SnO₂ Electrocatalysts: ORR Activity

Lower electronic conductivity—one of the causes for lower activity of Pt/SnO₂ electrocatalysts; the other being electrode dispersion.

NATIONAL RENEWABLE ENERGY LABORATORY

Results—Pt/SnO₂

Nafion-free results are better due to Nafion blocking or slowing down oxygen diffusion. Note: this only works for an RDE.

Pt/SnO₂ Electrocatalysts: Cyclic Durability

- Protocol (0.6–1.0V, RT, 500 mV/s) applied to baseline Pt/C and Pt/SnO₂ show similar losses in ECA. Losses are likely to be due to Pt dissolution which is independent of the support.
- Protocol (1.0V–1.6V, RT, 100 mV/s) applied to baseline Pt/C and Pt/SnO₂ show higher losses for Pt/C catalysts since the SnO₂ support is more corrosion resistant.

Pt/HPA-Graphitized C Electrocatalysts

Based on FY13 work on Pt/Ketjen Black-HPA, Fuel Cell Tech Team and DOE recommendation was to evaluated Pt/graphitized carbon-HPA.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

HPA Functionalization to C, Pt/C, WO₃ and Pt/WO₃

- Stabilize nano-metallic particles
- Decompose peroxide
- Alter electrochemistry on Pt surface
- Conduct protons

Immobilized HPAs as Catalyst Supports

HPA functionalization of Carbon black confirmed by EDX spectra.

Carbo

Pt/HPA-C EXAFS

The strong effect on the Pt edge with increasing HPA loading implies to us that Pt is preferentially binding at the HPA locations. In contrast, there is very little change in the W edge implying that the Pt-W interaction remains approximately unchanged as HPA loading is increased.

The maximum observed in Pt mass activity is likely a result of competing effects of the Pt-W interactions shown here and occupation of preferential binding sites by the HPA.

Pt/HPA-C Durability

The 0.6-1.0 V cycling (30,000 cycles, 500 mV/s) was used to evaluate Pt dissolution, while 1.0-1.6 V cycling (6,000 cycles, 100 mV/s) evaluated support corrosion. HPA loading was chosen such that initial activity was near equal to Pt/C (blue bars). In both cases, HPA helped maintain catalyst activity by slowing particle growth (red bars).

J. Electrochem. Soc. Volume 159 (12) Pages F871-879 (2012)

*All scale bars are 20 nm. **Insets show Pt particle size distribution in 0.5 nm increments starting from 1.5 nm.

Electrochemical Activity for ALD Catalyst (ALD—Pt/V)

Mass Activity Target = 275 mA/mg_{Pt}

In this next set of experiments (to slide 34) however, this data shows a decrease in the activity after HPA modification. The reason for the difference is not clear.

Electrochemical Activity for Wet Chemistry Catalysts (Pt/V, Pt/HT-V)

Mass Activity Target = 275 mA/mg_{Pt}; 380 mA/mg_{Pt}

Electrochemical Activity for Wet Chemistry Catalysts (Pt/G-KB)

Mass Activity Target = 275 mA/mg_{Pt}

Electrochemical Activity for Wet Chemistry Catalysts (Pt/GCNF)

Mass Activity Target = 275 mA/mg_{Pt}

Cyclic Durability of Pt/C and Pt/C-HPA

ECA (m²/g_{Pt}); ECA Loss (%)

Pt/Ketjen Black <u>Baseline</u>: BOL= 100 m²/g_{Pt}; EOL= 46 m²/g_{Pt}; 39.5% Loss **Pt/GCNF:** BOL= 82 m²/g_{Pt}; EOL=71 m²/g_{Pt}; 13.4% Loss

Pt/GCNF-HPA: BOL= 68 m²/g_{Pt}; EOL=52 m²/g_{Pt}; **23.5% Loss**

EOL @ 5000 cycles

Pt/GCNF exhibits improved durability compared to baseline, <u>but for post-HPA</u> <u>treatment, the losses are slightly higher</u>.

For these samples, the HPA treatment does not result in an improvement of the durability of the catalyst system.

FY 2014 1st Quarter Milestone

 Meet the Pt/C baseline activity of 275 mA/mg_{Pt} mass activity at 0.90 V, 100 kPa with either the HPA modified carbons or the non-carbon supports, but show a 2x greater cyclic durability in RDE tests.

Milestone has been met; but HPA treatment itself does not cause any improvement in durability of a graphitized carbon support.

2nd and Final Quarter Milestone

• Evaluate remainder of the Pt/HPA treated carbons with RDE

MEA testing was a no-go and the program was ended early with some cost saving to DOE