

Rationally Designed Catalyst Layers for PEMFC Performance Optimization

<u>Debbie Myers</u> and Nancy Kariuki <u>Rajesh Ahluwalia</u>, Xiaohua Wang, and Jui-Kun Peng

Argonne National Laboratory

Annual Merit Review Washington, D.C.

June 16-20, 2014

Project ID# FC106

This presentation does not contain any proprietary or confidential information

Project Overview

Timeline

- Project Start Date: April, 2013*
- Project End Date: March, 2016
- Percentage complete: 33%
 - * Not reviewed at 2013 AMR

Budget

- FY13 DOE Funding: \$843K
- Planned FY14 DOE Funding: \$1,345K
- Total DOE Project Value: \$3,480K
- Cost Share Percentage: 20%

Barriers

Barrier	2020 Target
A. Electrode Performance	>300 mA/cm ² at 800 mV >1000 mW/cm ² at rated power
B. Cost	\$5-9/kW _e catalyst, <\$30 kW _e system, <0.125 mg _{PGM} /cm ²
C. Durability	<40% loss of initial catalytic mass activity at 900 mV on O ₂ ; <30 mV loss at 0.8 A/cm ²

Partners and Project Lead

Johnson Matthey Fuel Cells

 Jonathan Sharman, Alex Martinez, Dash Fongalland, Stephen Thorpe, Brian Theobald, L. Smith, D. Ozkaya, M. Gutierrez, Eleanor Dann, Graham Hards, and Willie Hall

United Technologies Research Center

Mike Perry and Zhiwei Yang

University of Texas at Austin

 Paulo Ferreira, Kang Yu, Somaye Rasouli, and Andres Godoy

Indiana University Purdue University Indianapolis

 Jian Xie, Chuankun Jia, Zhefei Li, Yun Zhou, and Fan Yang

Project lead: Argonne National Laboratory

- Debbie Myers, Nancy Kariuki, Rajesh Ahluwalia, Xiaohua Wang, and Jui-Kun Peng
- Project management, characterization of structure of catalysts, inks, and electrodes using X-ray techniques; modeling and development of optimum catalyst layer structure, ink formulations, agglomerate size analysis; conductivity and electrochemical analysis of electrode layers

Relevance

Project Objective

 To realize the ORR mass activity benefits of advanced Pt-based cathode electrocatalysts in MEAs and stacks operating at high current densities and on air and at low PGM loading (≤0.1 mg_{Pt}/cm² on cathode)

Current Year's Objective

- Determine catalyst and cathode layer properties responsible for decline in advanced Pt-based cathode air performance at >1 A/cm²
- Develop a cathode catalyst layer model for advanced Pt-based catalyst
- Develop a method to impart proton conductivity to high surface area carbon supports

Example of lack of performance benefit of a Pt alloy over Pt when operating at > 1000 mA/cm² on air (cathode loading 0.2 mg Pt/cm², 80°C, 50/50 kPa gauge)

Metric	Units	DOE 2020 Target	Project Status
Mass activity	A/mg _{PGM} @ 900mV _{iR-free}	≥0.44	0.57
Specific activity	μA/cm² _{PGM}	720	986
PGM total loading	mg _{PGM} /cm ² _{geo}	≤0.125	0.092 (cathode)
MEA performance	mA/cm² @ 800 mV	≥300	298

Impact

Approach

- Determine property of electrode/catalyst that limits the high current density/air performance of electrodes based on advanced Pt-based cathode catalyst
 - The advanced Pt-based catalyst is **dealloyed PtNi (d-PtNi)** developed by Johnson Matthey in the General Motors-led DOE-FCTO project (FC087). The key catalyst characteristics and metrics are:
 - Catalyst deposited as nanoparticles onto Ketjen Black supports
 - Catalyst deposition chemistry is proven and via methods scalable to commercial levels
 - Mass activity exceeds DOE 2020 target
 - Mass activity loss after 30,000 0.60 to 1.0V cycles can exceed the DOE kinetic stability target
- Use information from characterization efforts to determine the performance-limiting property of the current d-PtNi electrode (used in FC087)
 - In-cell diagnostics of d-PtNi versus high surface area Pt and Pt of comparable electrochemically-active surface area
 - Using a suite of *in situ* and *ex situ* techniques: TEM, cryogenic TEM, dynamic light scattering, ultra-small angle X-ray scattering, X-ray absorption spectroscopy
- Design the catalyst layer composition and structure and support functionality to mitigate the performance limitations, guided by computational modeling
 - Study the dispersion of d-PtNi/C catalyst aggregates and the ionomer particles in liquid media and in electrodes and compare them to Pt/C-based inks and electrodes
 - Develop an ink composition and solvent removal process that minimize Ni corrosion and result in optimum agglomerate structure in d-PtNi/C-based electrode
 - Develop the catalyst support surface functionality to increase the performance of the catalyst and cathode

Catalyst variants and metrics

- High temperature annealing is needed to drive complete alloying of Pt and Ni in PtNi₃ precursor, which increases particle size
- Annealing is followed by chemical dealloying (see FC087 for details) which dissolves Ni, not Pt
- Goal is to avoid nano-porosity by using mild de-alloying conditions and by limiting particle size

Catalyst Code	Catalyst Type/ Annealing Conditions	Wt% Pt	Wt% Ni	Metal area by <i>ex situ</i> CO ads. (m²/g-Pt)	Particle Size by TEM (nm)
Catalyst A (13/21)	Pt/C Not annealed	28.3	-	92	2.0±0.1
Catalyst B (13/176)	Pt/C High T	29.7	-	37	5.8±0.3
Catalyst C (12/409)	PtNi (45:55) High T	22.4	8.24	52	5.8±0.2
Catalyst D (13/228)	PtNi (50:50) High T	31.1	7.01	38	5.6±2.2
Catalyst E (13/239)	PtNi (59:41) High T	30.6	6.50	47	6.5±3.0
Catalyst F (13/300)	PtNi (57:43) High T	29.1	6.68	50	5.1±1.0

Johnson Matthey Fuel Cells

Structure and distribution of Pt and Ni in d-PtNi

JM 12/409 d-PtNi Catalyst Powder

- d-PtNi particles are primarily solid solutions with a truncated octahedron shape
- A minority of particles are ordered alloys
- All particles have a Pt-rich outer shell
- Particles are well-dispersed on carbon support

Progress: Improvements in H₂/Air fuel cell performance of d-PtNi catalysts

12/409 d-PtNi catalyst 0.1 mg-Pt/cm² cathode loading

- The air performance of the d-PtNi cathode has been improved with each new version
- The latest versions of d-PtNi outperform high surface area Pt (13/21 Pt/C) at <1.2 A/cm²

- Results of 1st PtNi ccm using 12/409 d-PtNi cathode catalyst were used to set the project milestones
- Improvements in performance of CCMs with 12/409 d-PtNi catalyst were obtained with variation of cell compression.

Johnson Matthey Fuel Cells

FY'14 Milestones and Go/No-Go

Date	Milestone	Status
12/31/13	Improve the high current density air performance of the advanced alloy catalyst by 15% (increase iR-free cell voltage at 1 A/cm ² by 20 mV to 585 mV)	Exceeded. An iR-free voltage of 740 mV at 1 A/cm ² on air was achieved in Dec., 2013.
3/31/14	Improve performance by 30% (increase iR-free cell voltage at 1 A/cm ² by 40 mV to 606 mV)	Exceeded.
6/30/14	Improve performance by 40% (increase iR-free cell voltage at 1 A/cm ² by 54 mV to 619 mV)	Exceeded.
9/30/14 Go/No-Go	Improve performance by 50% (increase iR-free cell voltage at 1 A/cm ² by 67 mV to 632 mV)	Exceeded.

- Milestones were established based on 1st d-PtNi cell performance shown on previous slide
- Improvements in cell performance were the result of cell compression optimization and improved catalyst formulation
- Milestones and Go/No-Go are being revised to reflect the latest performance in d-PtNibased CCMs

Description of catalyst inks studied: baseline Pt, annealed Pt, and d-PtNi

Light scattering of catalyst inks for C agglomerate size

- Standard high solid, I/C = 0.8 catalyst inks (used for CCMs) diluted for light scattering
- Carbon agglomerate size: Pt/C<<annealed Pt/C<d-PtNi/C
- Agglomerate size dependence on ionomer content (I/C = 0.8, 1.0, 1.2):
 - Pt/C: agglomerate size decreases with increasing ionomer content
 - Annealed Pt/C: agglomerate size decreases with ionomer content, but less than for Pt/C
 - d-PtNi/C: very little dependence of agglomerate size on ionomer content
- d-PtNi/C shows less interaction with ionomer than Pt/C or annealed Pt/C

Johnson Matthey Fuel Cells

- There are differences in the catalyst/carbon agglomerate structure of Pt and d-PtNi inks which may affect transport within the PEMFC cathodes
- The solvent in the inks changes the agglomerate structure and can be used to improve the transport properties of the cathodes

Effect of ink composition on Ni oxidation in d-PtNi/C: *in situ* X-ray absorption spectroscopy

Δ

Nickel is leached out of d-PtNi during fuel cell testing

Electron probe microanalysis of d-PtNi CCMs

Results for higher Ni content d-PtNi: similar to 12/409 d-PtNi

Significant presence of Nickel at the cathode/membrane interface

• After 10,000 cycles there is some evidence of Ni at the membrane/anode interface

Performance Model

$$E = E_N - iR_\Omega - (iR_\Omega^c + \eta_c^c + \eta_m^c) - (iR_\Omega^a + \eta_c^a + \eta_m^a)$$

- R_{Ω} : High frequency resistance as measured by the current interrupt method. It includes membrane and contact resistances.
- η^c_c: ORR kinetic overpotential as determined from a kinetic model formulated using H₂/O₂ polarization data. It includes any kinetic effects due to limited O₂ solubility in ionomer.
- R_{Ω}^{c} : Cathode catalyst layer (CCL) resistance estimated from H₂/O₂ polarization data and ORR kinetic model
- η^c_m: Cathode mass transfer overpotential. It includes transport resistances due to O₂ diffusion in gas diffusion layer (GDL), CCL pores and ionomer film surrounding the catalyst particles.
- All anode overpotentials neglected
- Multi node finite-difference model for co-current and counter-current anode and cathode streams

Empirical Correlation for CCL Resistance

Potential drop (iR_{Ω}^{c}) in electrode estimated as difference in VIR measured in H₂/O₂ and VIR calculated using the ORR kinetic parameters

- R_{Ω}^{c} correlated with T, RH and current density
- Large uncertainty, inadequate differentiation between R_{Ω}^{c} of d-PtNi/C, annealed Pt/C and non-annealed Pt/C electrodes
- Separate impedance measurements needed for more accurate characterization of R_{Ω}^{c}

H₂/Air Cell Performance: Breakdown of Overpotentials

- Loss in performance of d-PtNi/C (relative to nonannealed Pt/C) at high current densities is due to higher mass transfer overpotentials
- Mass transfer overpotentials are related to surface enhancement factor (SEF, ECA/electrode area) and, therefore, are higher if Pt loading is reduced or particle size is increased
- Mass transfer overpotentials do not correlate with mass activity
- Effect of Ni contamination (compare with annealed Pt/C) on η_m appears to be small at beginning of life

Diazonium functionalization of carbon supports

100% surface coverage: 6 μmol/m² US Patent 5,554,739; Electrochimica Acta 94 (2013) 172– 181

- Ketjen C, Pt/Ketjen, and d-PtNi/Ketjen have been successfully functionalized with SO₃H groups
- Proton conductivity of ~0.05 S/cm has been observed with Teflon[®] instead of PFSA binder

BET Surface area after functionalization: 146 m²/g Proton conductivity at 80°C (PTFE binder): 0.05 S/cm

Summary of progress

- Standard Pt/C, annealed Pt/C, and d-PtNi/C catalysts and CCMs containing approximately 0.1 mg Pt/cm² loading of these cathode catalysts have been fabricated, tested, and characterized
- Three iterations of the d-PtNi with decreasing Ni content have been synthesized and fabricated into CCMs. Each iteration showed increasing ORR mass activity (0.53A/g-Pt to 0.57A/g-Pt) and improved H₂/Air CCM performance at >1A/cm².
- The best ORR mass activity obtained for the d-PtNi/C in a CCM was 0.57A/g-Pt (UTRC data), which exceeds the DOE 2020 target
- Mass transport losses are higher with d-PtNi/C and annealed Pt/C-based cathodes as compared to conventional Pt/C
 - Modeling effort shows that mass transport losses are related to lower surface area enhancement factors (ECA/electrode area) of d-PtNi
- Annealed Pt/C inks show smaller carbon agglomerates and a more branched and open secondary carbon structure than d-PtNi/C inks. This may impact interaction of ionomer with catalyst surface and consequently mass transport to catalytic sites.
- A functionalized carbon black with promising proton conductivity has been synthesized to address performance of low SEF catalysts.

Remaining Challenges and Barriers: Next steps

- Determine if Ni leached from d-PtNi/C during electrode fabrication is impacting electrode structure/properties
 - Experiments planned to add Ni²⁺ to Pt/C inks and electrode layers
- Improve performance at high current densities for low SEF electrodes with different ionomer content, equivalent weight ionomer, ink solvent, or protonconducting carbon supports
 - d-PtNi cathode CCMs with new ionomer/carbon ratio have been delivered to UTRC for testing/diagnostics
 - Electrodes using proton-conducting supports are being fabricated by IUPUI
- Complete USAXS, cryo-TEM, TEM analysis of ink and electrodes for input into Monte Carlo model of electrode structure
- Additional analysis of diagnostic data for annealed Pt/C and d-PtNi/C electrode layers and CCMs:
 - Impedance spectroscopy for breakdown of mass transport overpotentials for GDL, catalyst layer pores, ionomer
 - Steady-state oxide coverage measurements, kinetics of oxide formation
 - Determine proton conductivity and electronic conductivity as a function of temperature and relative humidity (*ex situ*) for electrodes made from the various catalysts and inks

Collaborations and acknowledgment

Project team (subs) within DOE H₂ Program

- Johnson Matthey Fuel Cells
 - Provide state of the art catalysts, inks, and CCMs for characterization efforts; fabricate CCMs using new ink compositions, materials, and techniques; scale-up the CCMs for large cells and short stacks
- United Technologies Research Center
 - Integrate JMFC CCMs with state-of-the art cell fixture and fabrication procedure; test and perform diagnostics on cells; fabricate and test a short stack based on these CCMs
- University of Texas at Austin
 - Pre- and post-test electron microscopy characterization of catalysts, electrodes, and CCMs
- Indiana University Purdue University Indianapolis
 - Functionalize carbon blacks; develop ink compositions; perform cryogenic transmission electron microscopy analysis of catalyst/ionomer inks; develop ink solvent removal processes; perform porosimetry measurements on the catalyst layer; test small-scale CCMs
- General Motors
 - In-kind contributor, project advisor
- Strategic Analysis, Inc.
 - In-kind contributor, cost analysis

<u>Thanks!</u>

DOE, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office

- Nancy Garland (Technology Development Manager)

Backup Slides

Description of Modeling of d-PtNi/C Electrodes and Membrane-Electrode Assemblies

- 1. Structural simulations of electrodes derived from microscopic and X-ray scattering characterization
- 2. Performance of fuel cells with d-PtNi/C membrane-electrode assemblies
 - 2.1 Kinetics of oxygen reduction reaction on d-PtNi/C catalyst
 - 2.2 Characterization of mass transfer overpotentials

Helox measurements Limiting current density measurements Electrochemical impedance studies

 $\rm 2.3~PtO_x$ equilibrium coverage and kinetics of $\rm PtO_x$ formation and reduction

H₂/N₂ impedance study Cyclic voltammetry study

Description of UTRC testing/diagnostics of Pt and d-PtNi MEAs

- Beginning-of-Life (BOL) performance of MEAs (all ~ 0.1 mg/cm²-Pt loading, except where noted):
 - d-PtNi/C
 - Annealed Pt/C (baseline)
 - As-prepared Pt/C

• Cell Builds:

- Solid bipolar plates with triple serpentine flow channels
- Co-flow of hydrogen and oxidant flows
- Active area = 12.25-cm²

Testing protocol:

- Wet-up to reach cells' peak performance
- BOL diagnostics, including:
 - H₂-pump, H₂-crossover, and ECA by CO stripping
 - Cyclic voltammetry and impedance characterization under nitrogen and air atmosphere
- BOL performances under various conditions, including:
 - O₂ concentrations (pure O₂ 1%)
 - Temperatures (60°C, 70°C, and 80°C)
 - Back pressures (100, 150kPa, and 200 kPa abs)
 - RHs (100%RH, 85%RH, 55%RH, and 30%RH)

Effect of RH on Air performance of d-PtNi/C, Annealed Pt/C, and non-Annealed Pt/C CCMs

Comparison of annealed Pt/C and d-PtNi/C cathodes

