2014 Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting Washington, DC – June 16-20, 2014

Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode Structure Design

Piotr Zelenay

Los Alamos National Laboratory Los Alamos, New Mexico 87545

Project ID: FC107

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: April 1, 2013
- Project end date: March 31, 2016

Budget

- **FY13 DOE funding:** \$745K
- Planned FY14 funding: \$1,275K
- Total DOE project value: \$3,999K
- **Cost share:** 20.1%

Barriers

- A. Activity (catalyst; MEA)
- B. Durability (catalyst; MEA)
- C. Power density (MEA)

Note: New project, not reviewed in 2013

Objective

Advance non-PGM cathode technology through the development and implementation of novel materials and concepts for cathode catalysts and electrodes with (i) oxygen reduction reaction (ORR) activity viable for practical fuel cell systems; (ii) improved durability; (iii) high ionic/electronic conductivity within the catalyst layer; (iv) adequate oxygen mass transport; and (v) effective removal of the product water.

Table 3.4.13 Technical Targets: Electrocatalysts for Transportation Applications							
Characteristic	Unit	2011 Status	Targets				
			2017	2020			
Non-Pt catalyst activity per volume of supported catalyst	A / cm ³ @ 800 mV _{IR-free}	60 (measured at 0.8 V) 165 (extrapolated from >0.85 V)	300	300			

Technical Targets (Subject to Modification as Required)

- Volumetric catalyst activity in MEA at 0.80 V (*iR*-free), 80°C: ≥ 300 A cm⁻³
- Four-electron selectivity (RRDE):
- MEA maximum power density at 80°C:
- Performance loss at 0.80 A cm⁻² after 30,000 cycles in N₂: $\leq 40\%$
- \geq 99% (H₂O₂ yield \leq 1%)
- \geq 1.0 W cm⁻²

Approach: Project Overview

ORR Catalyst Development

- Multiple nitrogen precursors and alternative supports (LANL)
- Non-pyrolyzed phthalocyanine-derived catalysts (Waterloo)
- Nitrogen-doped carbon nanostructures (LANL, Waterloo)

Characterization; Active-Site Determination

- Advanced catalyst characterization (UR, LANL, Waterloo, GM, ORNL)
- Active-site determination using oxygen analogs as surface-specific probes (UR, LANL)

Electrode Design, Integration and Optimization

- GM model validation and parameter estimation using *in situ* microstructured electrode scaffold measurements (GM, CMU)
- Microstructually-consistent models (CMU, ORNL)
- Electrode optimization (CMU, IRD, GM, LANL, Waterloo)

MEA Fabrication and Optimization; Project Deliverable

- MEA fabrication, optimization and scale-up (IRD, GM, LANL)
- Project deliverable: 50 cm² or larger MEAs (IRD, GM)

Catalyst Activity

- Develop novel synthetic approaches to increase active site density and access
- Tune porous structures to improve accessibility of active sites to reactants
- Probe active sites to understand structure-activity relationships
- Introduce alternative metals and/or elements to enhance activity through possible synergistic effects

Durability

- Use advanced carbon or non-carbon supports to mitigate carbon corrosion
- Discover alternative transition metals to overcome intrinsic instability of Fecatalysts in high potential/voltage ranges
- Optimize electrode structure to relieve water flooding at non-PGM cathodes

MEA Performance

Image, model (transport properties) and optimize non-PGM cathode structures

Date	Milestones	Status	Comments		
Dec 2013	Image 3D structure of a state-of-the-art LANL electrode by Nano-XRT and compute effective transport properties.	Complete	3D imaging of electrode with 50 nm resolution and hierarchical structure characterization accomplished; transport-property analysis complete.		
Mar 2014	Validate surface-probe approach for a non-PGM catalyst using at least two characterization techniques.	Complete	Validity of ⁵⁷ Fe Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) to probe Fe-site perturbation demonstrated.		
Jun 2014	Develop non-PGM catalyst that demonstrates volumetric current density of at least 100 A cm ⁻³ at 0.80 V in a membrane electrode assembly, over 50% enhancement in activity compared to the 2011 baseline of 60 A cm ⁻³ .	On schedule	84 A cm ⁻³ (<i>iR</i> -corrected) achieved for high surface-area PANI-Fe-C catalyst, approaching volumetric current density milestone.		
Sep 2014	Demonstrate $i_{0.8V} \ge 150$ mA cm ⁻² , $\eta > 95\%$, and 30,000-cycle performance loss of no more than 50 mV (ΔE_{γ_2} and/or ΔV at 0.8 A cm ⁻²).	Current density target complete Durability target pending	190 mA cm ⁻² at 0.8 V (<i>iR</i> -corrected) achieved with PANI-Fe-C catalyst; 160 mA cm ⁻² at 0.8 V shown with cyanamide (CM)-PANI-Fe-C; durability testing underway.		
Go/no-go decision for further development of metal-free catalysts based on nitrogen-doped nanostructures:					
Demonstrate with $E_{\gamma_2} \ge 0.60 V$ vs. RHE (September 2014)					

"Standard" PANI-Fe-C, 10 wt% Fe Two-step heat treatment

PANI-Fe-C, 30 wt % Fe Two-step heat treatment

PANI-Fe-C, 30 wt % Fe Three-step heat treatment

- Highlight: Catalysts with surface area values as high as 1100 m² g⁻¹ synthesized by new, three-step heat-treatment synthesis strategy
- Rumpled, multi-layered graphene sheet-like morphology with dispersed Fe atoms (bright spots)

New Catalysts: High Surface Area PANI-Fe-C

- Fe content and heat-treatment regime have minimal impact on ORR half-wave ($E_{\frac{1}{2}}$) and onset potential through RDE testing
- Electrochemically accessible surface area increases significantly up to 363 m² g⁻¹
- Highlight: 190 mA cm⁻² current density at 0.80 V (*iR*-corrected) through MEA testing

September 2014 current-density milestone of 150 mA cm⁻² met and exceeded by *ca.* 25%

- Changing heat-treatment regime modulates nitrogen doping, likely enhancing performance
- Significantly increased nitrogen content and relative amount of pyridinic-nitrogen doping with three-step heat treatment
- Highlight: 84 A cm⁻³ volumetric current density at 0.80 V (*iR*-corrected) through MEA testing

40% enhancement in volumetric current density compared to 2011 baseline (60 A cm⁻³); approaching June 2014 milestone of 100 A cm⁻³

New Catalysts: CM-PANI-Fe-C

RDE: 0.6 mg cm⁻²; 0.1 M H_2SO_4 ; 900 rpm; 25°C; Hg/HgSO₄ (0.5 M H_2SO_4) reference electrode, graphite counter electrode, steady-state potential program: OCP, 300 s, 30 mV steps, 30 s/step

- New catalyst developed combining multiple nitrogen
 precursors
- Highlight: Microporous surface area of 1585 m² g⁻¹;
 *E*_{1/2} value of 0.80 V vs. RHE, comparable with best non-PGM catalysts reported to date

New Catalysts: CM-PANI-Fe-C; H₂/O₂ Fuel Cell Performance

• MEA performance less dependent on back pressure – improved mass transport evident

- Power density of 0.87 W cm⁻² reached at 0.40 V and p_{O2} of 1.0 bar thanks to high catalyst activity and facile mass transport
- Highlight: Current density of 160 mA cm⁻² at 0.80 V (*iR*-corrected)

Second catalyst formulation that meets and exceeds September 2014 current density milestone of 150 mA cm⁻²

New Catalysts: CM-PANI-Fe-C; H₂/Air Fuel Cell Performance

Anode: 2.0 mg_{Pt} cm⁻² Pt/C H₂, 200 sccm, 1.0 bar H₂ partial pressure; **Cathode:** *ca.* 4.0 mg cm⁻² air, 200 sccm (2.5 stoichiometry at 1.0 A cm⁻²), 1.0 bar air partial pressure; **Membrane:** Nafion^{®,}211; **Cell:** 80°C

 Higher Nafion[®] content enhancing current density in kinetic region with performance sacrifice in mass transport region

- Highlight: Current density of 74 mA cm⁻² measured at 0.80 V on air (90 mA cm⁻², *iR*-corrected)
- Highlight: Power density of 0.35 W cm⁻² reached at 0.60 V

Record fuel cell performance achieved with an air-operated non-PGM cathode

New Catalysts: Metal-Free Non-PGM Formulations

RDE: 0.6 mg cm⁻², 0.1 M HClO₄, 900 rpm, 25°C, RHE reference electrode, graphite counter electrode, linear sweep voltammetry at 10 mV s⁻¹, not resistance corrected

 $E_{\frac{1}{2}}$ of 0.32 V vs. RHE for **metal-free** non-PGM catalyst

2014 Hydrogen and Fuel Cells Program Annual Merit Review - Slide 13

Catalyst Characterization: NO_(q) as a Molecular Probe

- Nitric oxide, NO_(g), an O₂-analog forming stable, non-reactive complexes with Fe used to study O₂ binding to Fe sites in metalloenzymes
- When combined with Fe-specific spectroscopic methods the O₂-analog approach
 - ✓ Probes the presence of surface/near-surface Fe accessible to $O_{2(g)}$
 - \checkmark Provides insight into the electronic/geometric structure of O₂-binding Fe site
 - \checkmark Promises to help clarify mechanism of O₂ activation/reduction (in combination with DFT methods)

General O₂-Analog Methodology

Key Challenge: How to characterize Fe in each of the three forms in order to determine the effects of reduction and NO_(q) treatment?

- Inorganic spectroscopic methods focusing on Fe are ideal for studying changes in molecularlevel structures upon reduction/(NO_(g) addition)
 - Nuclear resonance vibrational spectroscopy (NRVS) complete set of bands corresponding to the motion of Mössbauer-active nuclei, *i.e.*, ⁵⁷Fe
 - ✓ ⁵⁷Fe Mössbauer spectroscopy ⁵⁷Fe nuclear transitions; sensitivity to oxidation state; bulk vs. single-site Fe species, ligation environment changes; quantification of individual Fe components

ROCHESTER

Catalyst Characterization: Mössbauer Spectroscopy and NRVS

- **Mössbauer**: Demonstrates surface or near-surface iron species which can be reduced via bulk electrolysis
- Mössbauer: NO_(g) treatment consumes some original doublets while generating new doublet Fe species, consistent with NO coordination
- NRVS: Spectral changes at low energy upon reduction at 450-550 cm⁻¹, and distinct new NRVS feature upon NO(g) treatment at ~ 606 cm⁻¹ observed upon NO_(g) treatment
- Highlight: Viability of the surface probe approach in combination with Mössbauer and NRVS demonstrated

March 2014 catalyst surface-probe characterization milestone achieved

Electrode Studies: Electrode Microstructure (CM-PANI-Fe-C)

CM-PANI-C catalyst with 35% Nafion®

Upper "half" of electrode: ca. 52% porosity, open to surface

Lower "half" of electrode: ca. 41% porosity

AK RIDGE National Laboratory

- Lower "half" of electrode (adjacent to membrane) denser than upper "half", due to particle packing and smaller pore size
- Relatively thick (0.1-0.5 μm) ionomer film surrounds CM-PANI-C agglomerates; very little ionomer penetration into agglomerates
- Elemental map: fluorine from ionomer (green) and sulfur from PANI synthesis (associated with carbon phase; blue)

Electrode Studies: Nano-XRT Imaging (CM-PANI-Fe-C)

2014 Hydrogen and Fuel Cells Program Annual Merit Review – Slide 17

IONAL LABOBATORY

Electrode Studies: Transport Property Computation (CM-PANI-Fe-C)

Effective diffusivity:

Formation factor:

 $D_{eff} = K_f \overline{D}_{pore}$

 $K_f = rac{\mathcal{E}}{\tau}$ $rac{\varepsilon - \text{volume fraction}}{\tau - \text{tortuosity factor}}$

Bruggeman correction factor (a): $D_{e\!f\!f} = \varepsilon^{\alpha} \overline{D}_{pore}$

Pore	Solid		
$\begin{array}{l} \text{CM-PANI-Fe 35 wt\% Nafion} \\ \varepsilon = 0.47 \pm 0.03 \\ K_f = 0.19 \pm 0.03 \end{array} \qquad \alpha = 2.2 \pm 0.32 \\ \text{CM-PANI-Fe 50 wt\% Nafion} \\ \varepsilon = 0.49 \pm 0.06 \\ K_f = 0.21 \pm 0.06 \end{array} \qquad \alpha = 2.2 \pm 0.07 \\ \end{array}$	$\begin{array}{l} \text{CM-PANI-Fe 35 wt\% Nafion} \\ \varepsilon = 0.54 \pm 0.03 \\ K_f = 0.33 \pm 0.03 \end{array} \qquad \alpha = 1.8 \pm 0.14 \\ \text{CM-PANI-Fe 50 wt\% Nafion} \\ \varepsilon = 0.52 \pm 0.06 \\ K_f = 0.28 \pm 0.09 \end{array} $		
$\begin{array}{l} \textbf{CM-PANI-Fe 60 wt\% Nafion} \\ \varepsilon = 0.46 \pm 0.04 \\ K_f = 0.17 \pm 0.05 \end{array} \qquad \qquad \alpha = 2.3 \pm 0.16 \end{array}$	$\begin{array}{l} \text{CM-PANI-Fe 60 wt\% Nafion} \\ \varepsilon = 0.54 \pm 0.04 \\ K_f = 0.32 \pm 0.06 \end{array} \alpha = 1.8 \pm 0.19 \end{array}$		

2014 Hydrogen and Fuel Cells Program Annual Merit Review – Slide 18

Bosanquet formulation for diffusivity in pore:

 $\frac{1}{D_{DG}(d_{pore})} = \frac{1}{D_{Kn}(d_{pore})} + \frac{1}{D_{m}}$

Knudsen diffusivity:

$$D_{Kn}(d_{pore}) = \frac{d_{pore}}{3} \sqrt{\frac{8RT}{\pi M}}$$

Pore-size dependent local diffusivity (D):

 $-
abla \cdot ig(D_{DG}
abla c ig) = 0$ – does not assume uniform D

- Morphology parameters of porous electrode obtained from nano-XRT images
- Effective transport properties extracted from model
- Highlight: Computational simulation of transport process in nano-XRT imaged electrode completed

December 2013 electrode imaging milestone achieved

Collaborative Electrode Performance Evaluation and Characterization

Carnegie Mellon University

Electrode fabrication and performance evaluation

Microstructure and ionomer distribution imaging

Nano-XRT imaging and transport property modelling

Synergism between partners ensured by sequential execution of project tasks

2014 Hydrogen and Fuel Cells Program Annual Merit Review - Slide 20

MEA Fabrication: CM-PANI-Fe-C Catalyst

MEA Fabrication Process

2014 Hydrogen and Fuel Cells Program Annual Merit Review – Slide 21

Fuel Cell Performance with CM-PANI-Fe-C Catalyst

Anode: 0.2 mg_{Pt} cm⁻² Pt/C, H₂, 200 sccm, 1.0 bar H₂ partial pressure; **Cathode:** 3.5/1.5 mg cm⁻² O₂/air, 200 sccm, 1.0 bar O₂/air partial pressure; **Membrane:** 25 μm PFSA; **Cell:** 80°C

H₂/Air Fuel Cell Performance

H₂/O₂ Fuel Cell Performance

- Two 5 cm² and one 50 cm² non-PGM MEAs prepared and tested at IRD
- **Highlight:** First-generation spray-coated MEAs with CM-PANI-Fe-C catalyst demonstrated and tested in H₂/O₂ and H₂/air fuel cells

2014 Hydrogen and Fuel Cells Program Annual Merit Review - Slide 22

Collaborations

- Seven organizations with highly complementary skills and capabilities in catalyst development, electrode structure design, materials characterization, MEA fabrication, fuel cell system development and commercialization:
 - Los Alamos National Laboratory direct DOE-EERE contract
 - Oak Ridge National Laboratory *direct DOE-EERE contract*
 - Carnegie Mellon University subcontract to Los Alamos National Laboratory
 - University of Rochester subcontract to Los Alamos National Laboratory
 - University of Waterloo subcontract to Los Alamos National Laboratory
 - ✓ IRD Fuel Cells *subcontract to Los Alamos National Laboratory*
 - General Motors collaborative research and development agreement (CRADA) with Los Alamos National Laboratory (nearing completion)
- Collaborations outside Fuel Cell Technologies Office:
 - Ballard Power Systems, Burnaby, British Columbia, Canada
 - ✓ Automotive Fuel Cell Corporation, Burnaby, British Columbia, Canada
 - 🗸 CellEra, Caesarea, Israel
 - Pajarito Powder, Albuquerque, New Mexico
 - Chevron Energy Technology Company, Richmond, California

- Oxygen reduction reaction activity of non-PGM catalysts
- Long-term stability and performance durability of non-PGM catalysts
- Identification of the active-site and reaction mechanism
- Electrode integration: (i) sufficient ionic and electronic conductivity in thick catalytic layer and (ii) efficient mass transport to/from the active reaction sites
- Scale-up of non-PGM catalyst synthesis
- MEA design, optimization, fabrication and scale-up
- Integration with existing automotive fuel cell stack and system technology

Non-PGM Catalyst Development:

- Achieve remaining activity/durability FY14 catalyst performance targets
- Go/no-go decision for metal-free catalysts complete research needed; make decision
- Identify and follow two-three most promising catalyst synthesis paths in FY15 (e.g., twonitrogen precursor path); focus on both activity <u>and</u> durability

Catalyst Structure and ORR Mechanism Studies:

- Validate suitability of additional techniques in structural and mechanistic studies by surface-probe and other approaches (*e.g.*, MCD, EPR, low-voltage aberration-corrected STEM, high-resolution SEM/STEM, various X-ray absorption techniques, *etc.*)
- Propose preliminary ORR mechanism for one PANI-based catalyst

Electrode Design and Modeling:

- Initiate predictive model for non-PGM catalyst layers (ORR activity, conductivity, and O₂ transport); perform preliminary model validation; refine original GM model in conjunction with CMU's MES studies; adopt CMU's agglomerate model to non-PGM cathodes
- Complete implementation of the pore-scale model
- Integrate alternative catalyst formulations into electrode studies

MEA Fabrication and Optimization:

• Optimize first-generation spray-coated MEAs; initiate complete electrode optimization work

Summary

- Fuel cell specific activities of 190 mA cm⁻² and 160 mA cm⁻² at 0.80 V, much in excess of the project milestone (150 mA cm⁻²), were achieved independently with two new catalysts:
 (a) high surface-area PANI-Fe-C
 (b) dual nitrogen-precursor CM-PANI-Fe-C
- Volumetric activity of 84 A cm⁻³ at 0.8 V was demonstrated with the PANI-Fe-C catalyst; the activity represents 40% enhancement over the DOE baseline (60 A cm⁻³)
- Record on-air performance for a non-PGM catalyst was accomplished with CM-PANI-Fe-C:
 (a) current density of **74 mA cm⁻²** at 0.80 V (90 mA cm⁻², *iR*-corrected)
 (b) power density of **0.35 W cm⁻²** at 0.60 V
- A promising E_{1/2} of 0.32 V vs. RHE was achieved in RDE testing of a metal-free catalyst prepared by pyrolysis of a polymer/pore-forming agent
- Validity of the surface probe (NO_(g)) approach to active-site characterization was confirmed for PANI-Fe-C catalyst using Mössbauer spectroscopy and NRVS
- Considerable progress was achieved in non-PGM electrode-structure studies using nano-XRT, TEM, and STEM equipped with EDX mapping; electrode morphology parameters were obtained from nano-XRT and computational simulation of transport processes
- State-of-the-art ink and electrode preparation techniques were applied to non-PGM catalysts;
 well-performing 5 cm² and 50 cm² MEAs were demonstrated using these techniques
- All project milestones have either been met (some exceeded) or remain on schedule

Co-Authors

Catalyst research and characterization; project management

Piotr Zelenay (Project Lead), Hoon Chung, Ulises Martinez, Gerie Purdy, Gang Wu

Catalyst and electrode characterization

Karren More (PI), David Cullen

Electrode characterization, modeling and design

Shawn Litster (PI), Siddharth Komini Babu

Catalyst characterization

Michael Neidig (PI), Jeff Kehl, Jared Kneebone

Catalyst development and characterization

Zhongwei Chen (PI), Drew Higgins, Gaopeng Jiang, Min-Ho Seo

MEA design, integration, testing and scale-up

Madeleine Odgaard (PI), Debbie Schlueter

Electrode and MEA research; MEA validation
 Joseph Ziegelbauer (PI)

Back-Up Slides

Relevance: Motivation

2014 Hydrogen and Fuel Cells Program Annual Merit Review - Slide 29

LABOBATOBY

New Catalysts: High Surface Area PANI-Fe-C

"Standard" PANI-Fe-C, 10wt% Fe Two-step heat treatment

PANI-Fe-C, 30 wt % Fe Two-step heat treatment

PANI-Fe-C, 30 wt % Fe Three-step heat treatment

- Overall catalyst morphology depends on synthesis conditions (Fe content, heattreatment regime)
- Electron energy loss spectroscopy of single atoms on graphene sheet surface
- Fe ions highly mobile under electron beam, indicating that Fe is not incorporated within carbon lattice
- Nitrogen found in thicker areas of layered graphene

New Catalysts: Low Temperature Fe-Pc & Fe-SPc (DFT and Experimental)

RDE: 0.6 mg cm⁻²; 0.1 M HClO₄; 400 rpm; 25°C; Ag/AgCl reference electrode; graphite counter electrode; 10 mV/s; Non-resistance corrected. **Cycling:** 50 mV/s; O₂ saturation

- Addition of diphenylphenthioether substituent group to Fe-Pc (Fe-SPc) modulates electronic properties
- Negative Fe-center charge accumulation in Fe-SPc increases Fe-O cohesive energy, enhancing stability
- Unoccupied O 2p orbital shift in Fe-SPc hinders initial electron transfer to oxygen, reducing ORR activity
 University of Waterloo

2014 Hydrogen and Fuel Cells Program Annual Merit Review - Slide 31

Electrode Studies: CM-PANI-CM-Fe 35% Nafion[®] Electrode Microstructure

Upper "half" of electrode

- Upper "half" of electrode has *ca*. 52% porosity (p) open to surface
- Particle agglomerates are held together by ionomer strings/films (i), which also surround agglomerates
- Lower "half" of electrode (adjacent to membrane) denser due to particle packing/settling denser with fewer pores
- Lower "half" porosity of ca. 41%; not clear whether pores are closed or percolating •

Electrode Studies: Nano-XRT

Large Field of View: Phase and Absorption Contrast

Non-destructive imaging under ambient and controlled environments

2014 Hydrogen and Fuel Cells Program Annual Merit Review – Slide 33

Energy

filter

Sample & rotation

stage