2014 DOE Hydrogen and Fuel Cells Program

MANUFACTURING OF LOW-COST, DURABLE MEMBRANE ELECTRODE ASSEMBLIES ENGINEERED FOR RAPID CONDITIONING

PI: F. Colin Busby W. L. Gore & Associates, Inc. 6/18/2014

Project ID # MN004

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Budget

- Total Project Value: \$4.2MM
 - \$2.7MM DOE Share (65%)
 - \$1.5MM Contractor Share (35%)
- Total DOE Funding Spent: \$1.87MM*

*As of 3/31/2014

Barriers Addressed

- Lack of High-Volume MEA Processes
- Stack Material & Mfg. Cost
- MEA Durability

Timeline

- Project start: 9/01/08
- Project end: 12/30/14
- 90% complete as of 4/15/14

Partners

- University of Delaware (UD)
 - MEA Mechanical Modeling
- University of Tennessee, Knoxville (UTK)
 - Heat & Water Management Modeling
 - Stack Testing
- W. L. Gore & Associates, Inc. (Gore)
 - Project Lead

Relevance: Overall Objective

The overall objective of this project is to develop unique, high-volume¹ manufacturing processes that will produce low-cost², durable³, high-power density⁴ 5-Layer MEAs⁵ that minimize stack conditioning⁶.

- 1. Mfg. process scalable to fuel cell industry MEA volumes of at least 500k systems/year
- 2. Mfg. process consistent with achieving \$9/kW DOE 2017 automotive MEA cost target
- 3. The product made in the manufacturing process should be at least as durable as the MEA made in the current process for relevant automotive duty cycling test protocols
- 4. The product developed using the new process must demonstrate power density greater or equal to that of the MEA made by the current process for relevant automotive operating conditions
- Product form is designed to be compatible with high-volume stack assembly processes: 3-layer MEA roll-good (Anode Electrode + Membrane + Cathode Electrode) with separate rolls of gas diffusion media
- 6. The stack break-in time should be reduced to 4 hours or less

Table 3.4.14 Technical Targets: Membrane Electrode Assemblies								
Characteristic	Units	2011 Status ^a	2017 Targets	2020 Targets				
Cost°	\$ / kW	13 (without frame and gasket) 16 (including frame and gasket) ^d	9	7				
Durability with cycling	hours	9,000°	5,000 ^f	5,000 ^f				

<u>RD&D Plan Section 3.4, Task 10.1</u>: Test and evaluate fuel cell systems and components such as MEAs, short stacks, bipolar plates, catalysts, membranes, etc. and compare to targets. (3Q, 2011 thru 3Q, 2020)
 <u>RD&D Plan Section 3.4, Task 10.2</u>: Update fuel cell technology cost estimate for 80 kW transportation systems and compare it to targeted values. (3Q, 2011 thru 3Q, 2020)

Relevance: Objectives

- Low-cost MEA R&D
 - New 3-Layer (3-L) MEA Process Exploration (Gore)
 - Investigate equipment configuration for MEA production
 - Investigate raw material formulations
 - Map process windows for each layer of the MEA
 - Mechanical Modeling of Reinforced 3-L MEA (UD)
 - Use model to optimize membrane reinforcement for 5,000+ hour durability and maximum performance
 - 5-Layer (5-L) Heat & Water Management Modeling (UTK)
 - Optimization of GDM thermal, thickness, & transport properties to enhance the performance of thin, reinforced membranes and unique properties of direct-coated electrodes using a validated model
 - Evaluate potential for new process to achieve DOE cost targets prior to process scale-up (Go / No-Go Decision)
- Scale Up
 - Equipment setup (Gore)
 - Optimization (Gore)
 - Execute designed experiments which fully utilize UD and UTK modeling results to improve the new MEA process and achieve the highest possible performance and durability
- Stack Validation (UTK)

Approach: Summary

- Reduce MEA & Stack Costs
 - Reduce cost by elimination of intermediate backer materials which are scrapped
 - Reduce number & cost of coating passes
 - Improve safety & reduce process cost by minimizing use of solvents
 - Reduce required conditioning time & costs
- Optimize Durability
 - Balance tradeoffs between mechanical durability and power density of the 3-L construction
- Enabling Technologies:
 - Direct coating: Use coating to form at least one membrane–electrode interface
 - Gore's advanced ePTFE membrane reinforcement & advanced PFSA ionomers enable durable, high-performance MEAs
 - Utilize modeling of mechanical stress and heat / water management to accelerate lowcost MEA optimization
 - Advanced fuel cell testing & diagnostics

Approach: Go / No-Go Criteria

"Go" decision was made in September 2013

- >25% cost reduction in high-volume manufacturing of 3-layer MEAs
- Process will be scalable to FC industry MEA volumes in 2015 (estimate 100,000 m² / year)
 - Process will be consistent w/ achieving \$9/kW DOE 2017 automotive MEA cost target
- The product will also meet/exceed current MEA durability & power densities.

Approach: End of Project Milestone

- A fuel cell stack will be built and tested using Gore's new 3-layer MEA manufacturing process. These MEAs will not only be scalable to potential fuel cell industry MEA volumes in 2015 (estimate 100,000 m² / year), but they will also meet or exceed Gore's current power density (950 mA/cm² @ 0.6 V) and durability (Fluoride Release Rate< 1*10-7 g/cm²*hr, Voltage Cycling Decay < 50%) under the following conditions: H₂/Air, 1.3/2.0 stoich, 80°C dew points and cell temperature, 0 psig)
- Cost modeling of the process used to manufacture the MEA will indicate >25% cost reduction in high-volume manufacturing of 3-layer MEAs and the process will be consistent with achieving DOE's \$9/kW DOE 2017 automotive MEA cost target.

Approach: Low-Cost MEA Mfg Process

Technical Accomplishments & Progress: Summary

 Mechanical Modeling of Reinforced 3-L MEA (UD) Parametric analysis of layered structure Fatigue analysis of layered structure 	100% Complete 100% Complete	
 New 3-L MEA Process Exploration (Gore) 		
–Low-cost backer	100% Complete	
-Cathode Layer	100% Complete	
 Power density beginning of life (BOL) testing 		
 Electrochemical diagnostics 		
Durability testing		
-Reinforced Membrane Layer	100% Complete	
 Power density and robustness BOL testing 	-	
–Anode Layer	100% Complete	
 Power density and robustness BOL testing 	-	
Electrochemical diagnostics		
–Phase 2 Cost analysis (Gore and SA collaboration)	100% Complete	
 Scale-up and optimization 		
–Demonstrate entire 3-L process on a roll to roll coating line	95% Complete	
–Optimize membrane, electrodes, and GDM based on scale-up	50% Complete	

results and model predictions

Creative Technologies

Technical Accomplishments: Backer & pilot line progress

- Minor equipment modifications were needed to direct coat the membrane layer on top of the cathode layer using the modified backer
- Gore has since coated over 100 meters of intermediate MEA material on a roll to roll process
- Optimization of direct coated 3L MEA is in progress

Gore's state-of-the-art thin, durable reinforced membranes have been <u>DEMONSTRATED</u> in the roll-to-roll 3L process

Life in N₂ RH Cycling Test (# of cycles)

Compared to Gore's current commercial membranes (15-20 μ m), Gore's thin state-of-the-art membranes (~5 and ~10 μ m) show greatly enhanced performance at high current density, especially under hot, dry conditions

3-L MEA Manufacturing Process Cost Model

2009 cost model results indicate that the modeled process

lembrane Coating	2009 Process Waste Ma	2014 New Process Status Update
Process Costs	Primary forms of waste	Modeled Process Improvements
lonomer solution	line losses, edge trim, membrane thickness	Membrane thickness reduction
ePTFE	edge trim	
Backers	all backers	No backers 🛛
Solvent/disposables	all	
Process/MOH	time	
DL	time	
DL ectrode Coating <u>Process Costs</u> Catalyst	time Primary forms of waste line losses, edge trim, electrode residuals	Modeled Process Improvements Reduce scrap with better coating process
DL ectrode Coating <u>Process Costs</u> Catalyst Backers	time Primary forms of waste line losses, edge trim, electrode residuals all backers	Modeled Process Improvements Reduce scrap with better coating process No backers
DL ectrode Coating <u>Process Costs</u> Catalyst Backers Solvent/disposables	time Primary forms of waste line losses, edge trim, electrode residuals all backers all	Modeled Process Improvements Reduce scrap with better coating process No backers
DL ectrode Coating <u>Process Costs</u> Catalyst Backers Solvent/disposables Process/MOH	time Primary forms of waste line losses, edge trim, electrode residuals all backers all time	Modeled Process Improvements Reduce scrap with better coating process No backers
DL ectrode Coating <u>Process Costs</u> Catalyst Backers Solvent/disposables Process/MOH DL	time Primary forms of waste line losses, edge trim, electrode residuals all backers all time time	Modeled Process Improvements Reduce scrap with better coating process No backers
DL ectrode Coating <u>Process Costs</u> Catalyst Backers Solvent/disposables Process/MOH DL Layer Roll-Good Finis	Primary forms of waste line losses, edge trim, electrode residuals all backers all time time shing Operations Primary forms of waste	Modeled Process Improvements Reduce scrap with better coating process No backers Modeled Process Improvements
DL ectrode Coating <u>Process Costs</u> Catalyst <u>Backers</u> Solvent/disposables <u>Process/MOH</u> DL Layer Roll-Good Finis <u>Process Costs</u> Electrode	time Primary forms of waste line losses, edge trim, electrode residuals all backers all time time shing Operations Primary forms of waste edge trim	Modeled Process Improvements Reduce scrap with better coating process No backers Modeled Process Improvements Eliminate this process
DL ectrode Coating <u>Process Costs</u> Catalyst Backers Solvent/disposables Process/MOH DL Layer Roll-Good Finis <u>Process Costs</u> Electrode Membrane	time Primary forms of waste line losses, edge trim, electrode residuals all backers all time time shing Operations Primary forms of waste edge trim edge trim	Modeled Process Improvements Reduce scrap with better coating process No backers No backers Modeled Process Improvements Eliminate this process Eliminate this process
DL lectrode Coating <u>Process Costs</u> Catalyst Backers Solvent/disposables Process/MOH DL Layer Roll-Good Finis <u>Process Costs</u> Electrode <u>Membrane</u> Process/MOH	time Primary forms of waste line losses, edge trim, electrode residuals all backers all time time shing Operations Primary forms of waste edge trim edge trim time	Modeled Process Improvements Reduce scrap with better coating process No backers No backers Modeled Process Improvements Eliminate this process Eliminate this process Eliminate this process Eliminate this process

Additional cost savings beyond 2009 model assumptions

2009 Result

Gore and SA Cost Model Collaboration

- Top three cost uncertainties:
 - ePTFE cost
 - Maximum coating speed
 - Ionomer cost
- None the less, MEA uncertainty is still only~ +/-2% for each variable.

Technical Accomplishments: Response to Reviewers' Comments

- The project team should conduct a cost model analysis of manufacturing MEAs through electrode coating on diffusion media approach
 - This was recently added to the cost modeling scope of work
- Researchers should seek to make the results of the project more broadly applicable to other MEA manufacturers.
 - MEA performance data, durability data, and manufacturing cost models are shared publicly
 - Academic work at UD has been published extensively

Collaborations

- University of Delaware (academic, sub-contractor)
 - MEA Mechanical Modeling
 - A. Karlsson & M. Santare
- University of Tennessee, Knoxville (academic, sub-contractor)
 - 5-Layer Heat and Water Management Modeling and Validation
 - Stack Testing
 - M. Mench
- NREL (federal, collaborator)
 - On-line quality control systems research
 - M. Ulsh
- Strategic Analysis, Inc. (industry, collaborator)
 - Cost Modeling
 - B. James
- W. L. Gore & Associates, Inc. (industry, lead)
 - Project Lead
 - F. Busby

Remaining Challenges and Barriers

- **Challenge:** Optimize membrane and electrode properties within the constraints of the scaled-up 3L process so that the MEAs with direct coated electrodes can match the performance and durability of Gore's baseline commercial MEA
- **Barrier:** Evaluation of higher-activity supported catalyst, such as the core-shell catalysts that are being developed under separate DOE funded projects, is out of the scope of this project. Better catalysts are needed to reach the DOE precious metal cost target. The scope of this project is the cost of the <u>MEA manufacturing process</u>, not the raw materials.

Proposed Future Work: Summary

Summary (1)

• The overall objective of this project is to develop unique, high-volume manufacturing processes that will produce low-cost, durable, high-power density 5-Layer MEAs that minimize stack conditioning.

• Approach:

-Reduce MEA & Stack Costs

- Reduce the cost of intermediate backer materials
- Reduce number & cost of coating passes
- Improve safety & reduce process cost by minimizing solvent use
- Reduce required conditioning time & costs

-Optimize Durability

 Balance tradeoffs between mechanical durability and power density of the 3-L construction

-Unique Enabling Technologies

- Direct Coating to form membrane-electrode interfaces
- Gore's Advanced ePTFE membrane reinforcement & advanced PFSA ionomers enable durable, high-power density MEAs
- Utilize modeling of mechanical stress and heat / water management to accelerate low-cost MEA optimization
- Advanced fuel cell testing & diagnostics

Summary (2)

Key Accomplishments

- The primary path for the new 3-L MEA process has succeeded in incorporating the previously modeled process improvements which indicated potential for a <u>25% reduction in high-volume 3-L MEA cost</u>
- <u>Pilot-scale</u> demonstration of the new 3-L MEA process is nearing completion
 - Current density of un-optimized direct-coated electrodes is <u>equivalent</u> to or better than current commercial electrodes over a robust range of automotive operating conditions
 - Gore has demonstrated an <u>8 µm reinforced membrane</u> that is used in the new low-cost process and can meet automotive power density and durability targets
 - Modeling tasks at UD and UTK are complete
- The combination of Gore's advanced materials, expertise in MEA manufacturing, & fuel cell testing in partnership with the mechanical modeling experience of UD and the heat and water management experience of UTK enables a robust approach to developing a new low-cost MEA manufacturing process

Acknowledgements:

- W. L. Gore & Associates, Inc.
- Don Freese
- Will Johnson
- Mark Edmundson
- Glenn Shealy
- Simon Cleghorn
- Laura Keough

University of Tennessee, Knoxville

- Matthew M. Mench
- Ahmet Turhan
- Feng-Yuan Zhang

University of Delaware

- Anette Karlsson
- Mike Santare
- Narinder Singh
- Zongwen Lu

Strategic Analysis, Inc.

Brian James

Department of Energy

- Jesse Adams
- Nancy Garland

Technical Back Up Slides

Gore and SA Cost Model Collaboration

Gore MEAs and 3M NSTF™/Membrane Catalyst Coated Membrane are expected to have similar costs

- Material costs are about the same (since dominated by Pt cost)
- Gore processing costs are expected to be lower due to non-vacuum processing and faster line speeds
- Total costs are quite similar

17

Polarization performance is critical factor in selection

Cathode electrode made by the improved primary path process has demonstrated start/stop durability equivalent to the current commercial control electrode

DC Cathode Electrochemical Diagnostics

- Standardized protocol that combines BOL robustness testing with key cathode diagnostics at wet and dry conditions
- Test summary
 - Pre-Conditioning Diagnostics

Collected data to quantify oxidized impurities which are associated with conditioning time

- Cleaning Cyclic Voltammograms (CVs)
- CV, H₂ Cross-Over, Electrochemical Impedance Spectroscopy (EIS)
- Conditioning
- Saturated and Super-Saturated Performance
 - Polarization Curves, Current Interrupt Resistance, and Stoich Sensitivity
- Saturated Diagnostics
 - He/O₂, O₂ Tafel

Investigated impact of directcoated electrode structure on molecular diffusion

- CV, H₂ Cross-Over, EIS
- Sub-Saturated and Hot Sub-Saturated Performance
 - Polarization Curves, Current Interrupt Resistance, and Stoich Sensitivity

Sub-Saturated Diagnostics

- He/O₂, O₂ Tafel
- CV, H₂ Cross-Over, EIS

Quantified ionic conductivity of direct coated cathode

Technical Accomplishments: Mechanical Modeling (UD)

Technical Accomplishments: Mechanical Modeling (UD)

Properties of NAFION® 211 membrane, MEA and Reinforced PFSA measured

Condition	Rate	$K_{ m V}$ [MPa]	$K_{_{P}}$ [MPa]	A	n	$\sigma_{_y}$ [MPa]	H [MPa]
T=25, RH=30%	1mm/min	160	31	1.50E-09	6.5	1.55	19.8
	10mm/min	220	31	3.00E-09	6.5		
T=80, RH=30%	10mm/min	80	10.64	1.00E-05	4.5	0.532	7.0
	250mm/min	127	10.64	5.00E-06	4.5		

Visco-elasto-plastic properties of NAFION® 211 membrane determined

Visco-elasto-plastic behavior of MEA determined. Follows trends similar to membrane, but lower stress, indicating electrodes are less stiff than membrane

Visco-elasto-plastic behavior of reinforced membrane determined. Properties anisotropic and much stiffer than homogenous membrane. Visco-elasto-plastic properties nearly independent of humidity

True stresses are instantaneous force (measured) divided by instantaneous cross sectional area (calculated)

NAFION is a registered trademark of E. I. DuPont de Nemours & Company

Technical Accomplishments: Mechanical Modeling (UD)

Determination of PEMFC Electrode Mechanical Properties

