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Timeline 
• Start:  6-1-2005 
• End:    9-30-2014 
• 90% completed 

 Budget 
•Total Project Funding 

2005-2012: $1,427K  DOE 
$401,750 Cost Share 

•Funds received in FY13  
$250,000 (subcontract from 
SNL) 
$62,500 Cost Share 

•Planned FY2014 Funding 
$200,000 (subcontract from 
SNL) 

•Cost Share Percentage:  20% 

 

Partners 
National Renewable Energy Laboratory 

(NREL) 
Sandia National Laboratories (SNL) 

ETH Zurich (ETHZ) 
 

 

Barriers 
U. High-Temperature 
Thermochemical 
Technology 
V. High-Temperature 
Robust Materials 
W. Concentrated Solar 
Energy Capital Cost 
X. Coupling Concentrated 
Solar Energy and 
Thermochemical cycles 

Overview 
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Relevance 
Overall Objective  

• Develop efficient robust materials 
and operation methods for a two-
step thermochemical redox cycle 
that will achieve the DOE cost 
targets for solar hydrogen: 

($14.80/kg H2 in 2015; $3.70/kg H2 in 
2020; ultimately $2/kg H2) 
• Develop a scalable solar-thermal 

reactor design that will achieve the 
DOE cost targets for solar hydrogen. 

Objectives this period  
• Develop understanding of “hercynite 

cycle” chemistry, multi-tube reactor 
performance, and Red/Ox behavior 

• Kinetics and chemistry  
• Isothermal (IT) vs pseudo-isothermal (PIT) vs. 

temperature swing (TS) 
• Understanding IT, PIT  &. TS efficiencies 

• Develop continuous particle flow reactor 
& materials concept with independently 
controllable Red/Ox conditions  

• Analyze Surround Sun design 
• Develop Particle Flow Reactor design enabling 

broader reactor optimization 
• H2A Analysis 
• Identify critical research challenges for future 

investigation 
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2013 Milestone – “Synthesize a cobalt ferrite/alumina “hercynite cycle” active 
material and demonstrate isothermal redox water-splitting in a stagnation flow reactor 
at a temperature of 1350°C yielding a H2 production per gram of total mass of active 
material > 100 µmoles/g active material.” (> 200 µmoles/g active material achieved) 



Approach 
• Understanding the activity of Red/Ox materials and its 

impact on type of cycling (isothermal, pseudo-
isothermal, temperature-swing) and reactor efficiency.  

Materials 
Design and 
Properties 

Efficient, 
Cost 

Effective H2 

• Develop a more detailed understanding of 
Red/Ox materials mechanisms and, hence, 
methods to improve materials performance   

• Design a reactor which is scalable 
to large sizes, is comprised of 
suitable containment materials and 
is tunable for specific active 
materials.  
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Reactor 
Design 

Red/Ox 
Thermal 
Cycling 

• Demonstrate materials robustness, 
reactor operability on-sun and cost-
effectiveness via H2A analysis 



Broadening Red/Ox Design Space  
Red/Ox 
Thermal 
Cycling 

1350oC Isothermal “hercynite cycle” 

Muhich, C.L. et al., Science, 341, 540-542 (2013) 

• Oxidation temperatures up to the reduction temperatures 
are possible (enables expanded design space) 

• Higher oxidation temperatures reduce kinetic limitations 
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Accomplishments & Progress 

Take-Away 
It is possible to produce 
substantial H2 by 
operating isothermally & 
without simultaneous 
Red/Ox occurring using 
the “hercynite cycle” 



Need for “Pseudo-Isothermal” Operation 
Red/Ox 
Thermal 
Cycling 

• Oxidation temperatures that are too high can induce 
simultaneous O2/H2 production (below right) 

• Such processes can be cycled “pseudo-isothermally” 
where the Tred-Toxid is minimized (i.e. ≤ 150oC); e.g. 
1500oC Tred / 1350oC Toxid 

(372 µmole H2/g active material) (213 µmole H2/g active material) 
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↓
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↓
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εGG=0.97

εGG=1

Efficient Gas-Gas heat recuperation enables 
high efficiencies and low ΔT Red/Ox 

Thermal 
Cycling 

Parameters: 
• Tred = 1800K 
• Pred = 10 Pa 
• Solid heat recuperation = 

0.5 
• εGG : gas/gas recuperation 

efficiency 
• Tapp: temp. difference 

between ox  steam and 
inlet steam after gas/gas 
recuperation 

• ΔTopt: highest theoretical 
efficiency 

Ceria RedOx 

• εGG has large positive impact on efficiency 
 

• ε GG is negatively correlated with ΔTopt 
 

Conclusions: 

• Kinetic effects will lower efficiency and shift ΔTopt  to lower values 
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Highest theoretical efficiency is for isothermal 
processing & perfect steam/steam heat exchange 

Accomplishments & Progress 

Model based on  Ermanoski et al, PCCP 2014 



Key Factors for Efficient Water Splitting 
Red/Ox 
Thermal 
Cycling 

Process efficiency is highly dependent on:  (a) properties of 
Red/Ox materials – optimal Tred-Toxid, kinetics, and 
robustness (cyclability)…; and (b) reactor design – reliability,  
scalability, ability to recuperate heat, ability to efficiently  
remove O2…     

Staged steam / steam heat 
exchange is key 

Inconel:      100oC to 1000oC 
Ceramic:  1000oC to >1350oC 

Active Ceramic Heat Exchanger Development 
Ceramatec (http://www.ceramatec.com/applications/heat-exchangers.php) 

HTI (http://www.heatxfer.com/)  

AGC (http://www.agcc.jp/2005/en/environment/03_04.html) 

“heating gases to 1200oC is 
almost guaranteed, 1300oC 
should work, 1500 oC could be 
possible, and even hotter may be 
possible” 
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Accomplishments & Progress 

Isothermal operation with perfect 
steam/steam heat exchange is 
theoretically most efficient Red/Ox 



• “Hercynite cycle” operates 
through an O vacancy 
mechanism 

• Spinels enable high Fe 
content 

• Al provides structural 
stability 
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Displacement 
Mixed 

Displacement O Vacancy 

Red 165 kJ/mol 150 kJ/mol 318 kJ/mol 

Ox 77 kJ/mol 80 kJ/mol -76 kJ/mol 

Materials 
Design and 
Properties 

Using density functional theory 
(DFT), high temperature In-situ 
XRD, and SEM/EDS to identify 
“hercynite cycle” mechanism 

“Hercynite Cycle” Red/Ox Most Likely Reduces 
Through O Vacancy Formation 

Co0.5Fe0.5Al2O4  Co0.5Fe0.5Al2O4-δ + δ/2 O2  
Co0.5Fe0.5Al2O4-δ + δH2O  δH2 + Co0.5Fe0.5Al2O4  

δH2O  δH2 + δ/2 O2   

Various reaction mechanism energies 

Accomplishments & Progress 

CoFe2O4 + 3Al2O3  Co0.5Fe0.5Al2O4 + 1/2 O2  
Co0.5Fe0.5Al2O4 + H2O  H2 + CoFe2O4 +3Al2O3  

CoFe2O4 + 3Al2O3  CoAl2O4 + 2FeAl2O4 + 1/2 O2  
CoAl2O4 + 2FeAl2O4 + H2O  H2 + CoFe2O4 +3Al2O3  

Displacement mechanism 

Mixed displacement mechanism 

O-vacancy mechanism 



Pseudo-­‐isothermal	
  water	
  spliRng	
  

Higher reduction temperatures coupled with 
ΔT prevent simultaneous Red/Ox, enable high 
H2 generation and capacity 
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Materials 
Design and 
Properties 

Accomplishments & Progress 
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[H2O] in 200 sccm He  

85% active 
“hercynite cycle” 
material 



Multi-tube Reactor Design Limitations 

Results for Multi-tube reactor 
design: 
• Limited ΔT achievable in the 

tube based design due to 
radiation between tubes. 

• Large ΔT within the tubes limits 
use of materials packed into 
reactor. 

   Need new reactor design 
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Temperature Swing Isothermal 

Reactor 
Design 

Principles for particle flow 
reactor: 
• Separate containment for 

Red/Ox 
• Use flowing particles to 

enable even heating 
• Decouple Red/Ox times 

Accomplishments & Progress 



Solar Thermal Particle Flow Reactor  
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Key Design Points 
•  Controllable ΔT; reaction 

decoupling 
•  Efficient/Scalable beam-up 

receiver 
•  Flowing “engineered” active 

particulate materials 
•  Transport limitations 

mitigated 
•  Heat recuperation 
•  Vacuum pumping O2 

removal 
Robust Particle Flow is Critical 

Reactor 
Design 

Accomplishments & Progress 
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Reactor 
Design 

Accomplishments & Progress 

Solar Thermal Particle Flow Reactor   



Annual Particle Replacement Costs 

14	
  - L.-S. Fan, Chemical Looping systems for Fossil Energy Conversions. American 
Institute of Chemical Engineers (AIChE) and John Wiley & Sons, Inc., 2010. 

•  High reactivity/fast kinetics decreases flow rate for 
particles between reduction and oxidation reactors 

•  Durable particles increase number of cycles 

Materials 
Design and 
Properties 

1C. Linderholm, et al.,  Fuel, vol. 88, pp. 2083-2096, 2009. 

Spray dried particles 
can operate up to a 
calculated lifetime of 
396,000 cycles based 
on 1000 oC; 1000 hr 
runs for chemical 
looping combustion1 
(> 11 yr lifetime) 

f 
$2.00/kg H2 

Cycles Years 
0.1 10,561 0.30 
0.3 31,683 0.90 
0.5 52,805 1.51 
0.7 73,926 2.11 
1.0 105,609 3.01 

Accomplishments & Progress 

Particle Robustness 

C: replacement cost 
s: materials cost 
r: flow rate  
y: cycle days/year 
f: fraction of replacement cost  
     from reprocessing of material 
n: cycles before replacement 

“Engineering design” of Red/Ox particles to  
minimize replacement cost, C, is critical 

Spherical particles minimize attrition & material deposition on 
colder surfaces by thermophoresis which are essential for long 
term, safe operation: fabricate spray died particles 



H2A Economics are Promising 

• Capital cost estimations 
– Scaled from previous analyses or estimated cost of material  
– Solar field/tower calculated from DELSOL3 

• Operating cost estimations 
– Incorporated input streams, utilities, byproducts 
– Replacing all active material every  3 years 

• “Living” H2A for “hercynite” cycle 1st pass complete 
15 

Plant Capacity 50k kg H2/day 
Total Capital 
Investment $70M 

Tower Height 134 m 
Number of 
Heliostats 4940 

H2A H2 Price $1.97 / kg H2 

Accomplishments & Progress 



Collaborations 

• High-flux Solar Furnace On-sun 
Operations at NREL 

• Laser-assisted Stagnation Flow Reactor 
Operations at Sandia – Livermore (one 
Ph.D. student in-place at all times; two 
students in summer, 2013) 

• Long term materials testing – ETH Zurich 
• Future Reactor system modeling - ANU 
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Weaknesses Addressed 
• Weakness – Not enough time was spent on reactor design and scale-up 
• Addressed – A major effort was made in modeling the multi-tube reactor 

configuration – a paper has recently been accepted for publication in Solar Energy. 
 

• Weakness – Active materials with Red/Ox reaction back and forth may offer 
integrity challenges that will only be apparent after repeated cycling 

• Addressed – A current task is to operate for at least 100 cycles using the Gold IR 
furnace at partner ETH Zurich; further, we propose making “engineered particles” 
that are flowable and attrition resistant; we recognize the value of understanding 
C=8sry/n $/yr 
 

• Weakness – there are more advanced reactor concepts under development that 
might be suitable to achieve an additional raise in the efficiency of the process 

• Addressed – We are proposing a particle flow reactor with a flexible ΔT and Δ P, and 
efficient “beam-up” design to minimize convection and multiple solar reflection 
losses, high-temperature mechanical parts prone to break, and scale-up limitations 
as well as thermophoretic deposition challenges on quartz windows; we are 
focused on flowable/attrition resistant active “engineered particles” and proper 
containment materials. 17 



Future Work 
• Red/Ox cycling 

– Incorporate Red/Ox extents from “hercynite cycle” and new materials into 
model to determine “optimal” ΔT 

• Materials Design and Properties 
– Increase range of “hercynite cycle” pseudo-isothermal data 
– Assess long term materials stability in a gold IR furnace at ETH-Zurich over > 

200 cycles  
– Determine long term stability of spray dried particles 
– Develop improved “hercynite cycle” and perovskite materials for STWS using 

high through-put screening methods 
– Investigate improved materials extent of reduction for various PO2 and PH2O 

• Reactor Design 
– Develop CFD model for new particle flow reactor design 
– Investigate ALD coatings on SiC to develop suitable containment materials 

• Efficient H2 production 
– Improve H2A analysis by including additional kinetics/thermodynamic data 
– Interface with heat exchanger producers to develop high T systems 
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Summary 
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• Red/Ox cycling 
– Obtained Rasirc Rainmaker© steam generator 
– ΔT down to 0 (isothermal Red/Ox) is possible, enabling large design space for 

optimization 
– Optimal ΔT is dependent on active materials, gas/gas heat transfer efficiency and 

temperature of H2/H2O separation 

• Materials Design and Properties 
– “Hercynite cycle” appears to operate through O vacancy mechanism (preliminary) 
– Developed oxidation kinetics for high temperature CO2 splitting 
– “Pseudo-isothermal” processing enables high reduction extent and rapid oxidation kinetics 

without simultaneous reduction/oxidation occurring  
– Obtained Büchi Lab bench spray drier 

• Reactor Design 
– Surround sun reactor doesn’t enable large ΔT, and temperature is not easily controllable 
– Developed particle flow reactor concept to avoid this problem 

• Efficient H2 production 
– Carried out H2A analysis on the new reactor concept and found we can meet the price 

and efficiency targets but not the tower or materials cost targets 
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Overcoming Reactor Materials Challenges 
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Al2O3 

3Al2O3 x 2SiO2 (mullite) 

SiC wall 
SiO2 

(protective 
layer) 

T < 1650oC, 
air, and 
1 atm P 

>3Al2O3 x <2SiO2 (graded) 

T = 1350oC, released O2 
(reduction reactor step) 

or 
T = 1350oC, flowing H2O(v) 

(oxidation reactor step) 

 
Overall Al2O3 ALD 

 
Overall SiO2 ALD 

Al2(CH3)6 (TMA) + 3H2O  Al2O3 + 6CH4 
T = 175oC 

SiCl4+ 2H2O  SiO2 + 4HCl 
T = 327oC   or 
TMA + tris(tert-pentoxy)silanol (TPS)  

T = 175oC 

2 μm 

[1]J. I. Federer, et al.,  Oak Ridge National Laboratory Report No. ORNL/TM-11828, 1991. 
[2]R. Krishnamurthy, et al.,  J. Am. Ceram Soc, vol. 88, pp. 1099-1107, 2005. 
[3]M. L. Auger, et al., J. Am. Ceram Soc, vol. 83, pp. 2429-2435, 2000. 
[4]S. M. Zemskova, et al.,  Journal De Physique Iv, vol. 11, pp. 861-867, Aug 2001. Future Work 



STH Efficiency Calculation Efficiency 
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•  “Hercynite cycle” operates through 
an O vacancy mechanism 

•  Spinels enable high Fe content 
•  Al provides structural stability 
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Displacement 
Mixed 

Displacement O Vacancy 

Red	
   165	
  kJ/mol	
   150	
  kJ/mol	
   318	
  kJ/mol	
  

Ox	
   77	
  kJ/mol	
   80	
  kJ/mol	
   -­‐76	
  kJ/mol	
  

Materials 
Design and 
Properties 

Using density functional theory 
(DFT), high temperature In-situ 
XRD, and SEM/EDS to identify 
“hercynite cycle” mechanism 

“Hercynite Cycle” Red/Ox Most Likely Reduces 
Through O Vacancy Formation 

CoFeAl2O4 ! CoFeAl2O4-δ + δ/2 O2  
CoFeAl2O4-δ + δH2O ! δH2 + CoFeAl2O4  

δH2O ! δH2 + δ/2 O2   

Various reaction mechanism energies 

Accomplishments & Progress 



Materials Dependent Properties 

Materials properties are key in 
achieving high efficiencies: 
• Need low ΔHred (high enough 

for reaction) 
• Large extent of Red/Ox 

possible 
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EpGG=0.7
EpGG=0.8
EpGG=0.9
EpGG=0.95
EpGG=0.99
EpGG=1

“New” material 

Red/Ox 
Thermal 
Cycling 

Parameters: 
• Degree of reduction = 0.1 
• ΔHred = 310 kJ/mol 

 
 

New materials design:  

Deml, A. et al. In press Energy and Environ. Sci.  

25 Accomplishments & Progress 



Kinetic Effects on PITWS Efficiency 
• Fast kinetics and high εss approach 

thermo efficiency limit 
• Moderate kinetics lowers overall 

efficiency slightly 
• Low εss shifts ΔTopt  to lower values 
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∆Tapp=252.4 K

at ∆T=240 K
↓

εGG=0.8

εGG=0.8-kinetic
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Fast Kinetics 

Moderate Kinetics 
High εss 

Moderate Kinetics 
Low εss 



Annual Particle Replacement Costs 
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  -­‐	
  L.-­‐S.	
  Fan,	
  Chemical	
  Looping	
  systems	
  for	
  Fossil	
  Energy	
  Conversions.	
  American	
  
Ins2tute	
  of	
  Chemical	
  Engineers	
  (AIChE)	
  and	
  John	
  Wiley	
  &	
  Sons,	
  Inc.,	
  2010.	
  

•  Spray drying active materials eliminates 
sharp edges which tend to attrite & deposit 
on colder surfaces by thermophoresis 

•  High reactivity/fast kinetics decreases flow 
rate for particles between reduction and 
oxidation reactors 

•  Durable particles increase number of cycles 

Materials 
Design and 
Properties 

C.	
  Linderholm,	
  et	
  al.,	
  	
  Fuel,	
  vol.	
  88,	
  pp.	
  2083-­‐2096,	
  2009.	
  

Spray dried particles 
can operate up to a 
calculated lifetime of 
396,000 cycles based 
on 1000 oC; 1000 hr 
runs for chemical 
looping combustion: 
(= 3.75 yr lifetime for 
$2/kg H2 target) 

Particle Robustness 

Replacement 
Cost Fraction 

$2.00/kg H2 
Cycles Years 

0.1 10,561 0.30 
0.3 31,683 0.90 
0.5 52,805 1.51 
0.7 73,926 2.11 
1.0 105,609 3.01 

Accomplishments & Progress 

C: replacement cost 
s: materials cost 
r: flow rate  
y: cycle days/year 
n: number of cycles 
before replacement 

“Engineering design” of Red/Ox particles to  
minimize replacement cost, C, is critical 




