Solar Hydrogen Production with a Metal Oxide Based Thermochemical Cycle

Ivan Ermanoski, Anthony McDaniel

Sandia National Laboratories

DOE Annual Merit Review 19.06.2014

Project ID: PD081

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 10/2008
- Project End Date: 10/01/2014*
- Project Complete: TBD

Budget

- Total DOE project value.
 \$5487K (2008-2014)
- Funding for FY14.
 \$550K (SNL)
- Planned Funding for FY15.
 \$650K (SNL)
- Cost share.

20% contractors, 0% SNL

Barriers Addressed

- S: High-Temperature Robust Materials.
- T: Coupling Concentrated Solar Energy and Thermochemical Cycles.
- X. Chemical Reactor Development and Capital Costs.
- AC: Solar Receiver and Reactor Interface Development.

Partners

- Bucknell University, Lewisburg PA.
 Prof. Nathan Siegel
- Colorado School of Mines, Golden CO.
 Prof. Jianhua Tong
- University of Colorado, Boulder CO. Prof. Alan Weimer

*Project continuation and direction determined annually by DOE.

Relevance

•<u>DOE Objective</u>: By 2015, verify the potential for solar thermochemical (STCH) cycles for hydrogen production to be competitive in the long term and by 2020, develop this technology to produce hydrogen with a projected cost of \$3.00/gge at the plant gate.

• <u>Project Objective</u>: Develop a high-temperature solar-thermochemical reactor and redox materials for *efficient* hydrogen production based on a two-step, nonvolatile metal oxide cycle.

• 2013-2014 Objectives:

- Discover and characterize suitable perovskite materials for two-step, non-volatile metal oxide thermochemical cycles.
- Develop particle receiver-reactor concepts and assess feasibility.
- Construct and test a reactor prototype.

• 2013 Achievements:

- Discovered Sr_{0.6}La_{0.4}Mn_{0.6}Al_{0.4}O₃ (SLMA) perovskite that exhibits better water-splitting (WS) cycle performance than both CeO₂ and ferrites.
- Demonstrated that oxide reduction under vacuum is the best way to achieve

DOE 2020 target for STH efficiency.

Technical Efforts Target Three Key Areas

- Refine estimates for H₂ production cost using H2Av3
- Materials discovery and characterization.
 - Tune material properties with perovskite oxides
 - a very large composition-property space exists!

PROPERTY	CERIA (CeO ₂)	PEROVSKITE (SLMA)	PEROVSKITE IDEAL
Redox Kinetics	FAST	SLOW/FAST	FAST
Capacity ($\Delta\delta$)	LOW	HIGH	HIGH
T_{TR} @ Reduction	HIGH	LOW	LOW
H ₂ O/H ₂ @ Oxidation	LOW	MED/HIGH	LOW
Durability	HIGH	MED/HIGH	HIGH
Earth Abundance	LOW/MED	HIGH	HIGH

- Reactor design and development.
 - Particle reactor with novel beam-down optics
 - Reactor design and material are critically linked

 Three-pronged approach to develop solar thermochemical H₂ production technology that meets all DOE R&D targets.

two-step metal oxide cycle

Summary of FY13 Reviewer Comments

- Reviewers agree that our FY13 technical approach, facilities, project planning, and achievements were exemplary.
 - Discovery of redox-active perovskite a "major leap forward"
 - Vacuum reduction of oxide a "game changer"
 - "DOE's goals for hydrogen production costs [seem] achievable"
- Specific programmatic and technical concerns.
 - Research not balanced between material discovery and reactor development
 - High temperature effects on moving reactor parts and particles not addressed
 - Operation at high temperature has not been demonstrated
- Response.
 - Opinions seem to vary, some favor more materials work and less reactor design, others the opposite. We believe the program is well balanced.
 - From a materials viewpoint, two-step water splitting cycles have been demonstrated at high temperature.
 - From a reactor viewpoint, we are methodically marching towards demonstrating high temperature operation in the engineering test stand. Thus far we have not encountered any show stoppers.

Milestones and Progress

03.2013-03.2014 Accomplishments

ACTIVITY	MILESTONE	COMPLETE
Analyze the hydrogen production cost from a particle reactor on a centralized receiver using the H2Av3 tool.	Analyzed 100,000 kg H_2 /day centralized receiver-based facility using CeO ₂ and SLMA perovskite oxide, sensitivity analysis reveals reactor efficiency is a critical cost driver. Demonstrated a clear R&D path towards achieving \$2/kg H_2 ultimate cost target for hydrogen production.	90%
Synthesize a small number of candidate perovskite oxide redox materials.	Sol-gel method used to synthesize ~2g quantities of 30 perovskite formulations from 7 different Mn- and Fe-based families.	65%
Characterize the thermodynamic and kinetic performance of redox materials.	30 new perovskites screened using TGA protocol, conducted detailed kinetic studies on 6 material formulations and hercynite.	50%
Derive a thermodynamic model for one SLMA ($Sr_{1-x}La_xMn_{1-y}Al_yO_3$) perovskite compound.	Measured P_{O2} -T- δ for SLMA6464 using TGA and derived a thermodynamic model used to predict STH efficiency in Sandia's particle reactor.	100%
Discover redox active perovskites that exceed SLMA performance.	None of the 30 novel perovskite formulations improved the solar-thermochemical H_2 performance baselines established by SLMA (discovered last year).	50%
Theoretically analyze Sandia particle reactor performance using SLMA.	Predicted the optimal operating temperature (Δ T), O ₂ pressure (vacuum), and heat recovery effectiveness required to meet or exceed a STH conversion ratio greater than the 2020 target of 20%.	100%
Design and construct an engineering test stand of particle reactor without solar interface.	Designed, built, and tested a vacuum seal and bearing that enables chamber rotation that can maintain <10 Pa vacuum during full-speed rotation. This is well below the first chamber design pressure of 100 Pa. Finalized designs for major engineering test stand components, complete construction by June.	60%
Design central-receiver based H ₂ production plant upon which to base H2Av3 analysis.	Designed H_2 production plant including solar field, receiver-reactor, and balance of plant based on SLMA perovskite redox chemistry. Plant sized for 100,000 kg H_2 /day.	90%

Reactor and Materials Innovation

- We continue to overcome technical barriers to implementing high-temperature solar thermochemical H₂ production.
 - Developed a novel cascading pressure design concept that achieves very low O₂ pressures during reduction.
 - Developed novel perovskite formulations that lower the required thermal reduction temperature.
 - Combined reactor designs and material formulations that achieve optimal STH efficiency.
 - Striving to reduce the dependence on hightemperature solid-solid heat recovery.

Advancing solar H₂ production technology through materials and engineering innovation.

H2Av3 Analysis of 100,000 kg H₂/Day Plant

- Central receiver-based particle reactor.
 - 260 towers @ 4.2 MW_{TH} /tower over 3.5 km²
 - Meteorological data for Daggett, CA annual collection efficiency: 51.6%
 - Analyzed 3 cases:
 - 2015, 2020, and ultimate cost targets
- H₂ cost dominated by capital cost.

DEVELOPMENTAL PROGRESS						
PARAMETER	2015	2020	ULTIMATE			
STH Efficiency	10	22	27			
Recuperator Efficiency	40%	70%	90%			
Heliostat Cost (\$/m²)	170	100	75			
Capital Reduction Factor*	1.0	0.5	0.25			
O&M Reduction Factor	1.0	0.5	0.25			
H ₂ Cost (\$/kg)	15.15	3.99	2.29			

*Excluding heliostat cost.

- Ultimate cost target of ~\$2/kg H₂ achieved.
 - STH efficiency of 27%
 - 75% decrease in capital and O&M costs relative to 2015 case
- ower Reflecto umns/Coolin Towe Hydrogen Production Cost [\$/kg] 25 20 15.15 15 10 9.58 7.26 6.14 5 3.99 3.96 3.42 3.06
- STH efficiency linked to capital cost (i.e., determines number of heliostats, towers, particle reactors, heat exchangers, etc.).
- High STH efficiency critically important to meeting DOE cost targets.

Thermodynamic Model for SLMA

- P_{O2} - δ -T relationship measured using TGA.
 - 18 orders of magnitude in P₀₂
 - 1073K < T < 1673K
 - $0 < \delta < 0.35$
- O₂-SLMA solid solution model.
 - Electrons delocalized
 - O-vacancies randomly distributed
 - Non-ideal $\Delta H_{oxid}(\delta)$
- Fit ΔH_{oxid} , ΔS_{oxid} , and 'a' to P_{O2}, δ , and T.

$$\frac{RT}{2}\ln P_{02} = \Delta H_{oxid}^0 - a\delta - T\left(\Delta S_{oxid}^0 + R\ln\left(\frac{\delta}{3-\delta}\right)\right)$$

 δ is a measure of oxygen deficiency in $\text{ABO}_{3\text{-}\delta}$ perovskites

- Model predicts high STH efficiency for SLMA in Sandia's particle reactor.
- δ > 0.3 for SLMA uncommonly large (yields high H₂ capacity).

The Search Continues for a Perovskite

D₂ (µmole/s/g)

10

- Synthesized 30 perovskites from Mn- and Fe-based B-site families.
 - Sol-gel method
- Identified promising candidates using TGA screening.
 - $T_{TR} = 1350^{\circ}$ C for 1.5 hr in Ar
 - $T_{WS} = 1000^{\circ}C$ for 1.5 hr, 40 vol.% H₂O
- Detailed kinetic measurements on 6 materials in Sandia's laser-heated stagnation flow reactor (SFR).
 - Onset temperature for reduction
 - O₂ uptake-and-release
 - Water-splitting (WS) activity
 - Found several redox-active perovskites with $T_{TR} < CeO_2$ and $\delta > CeO_2$.

Established Threshold for Reduction Temperature

- T_{OR} = O₂ onset temperature for thermal reduction.
 - Different than T_{TR} (usually $T_{OR} \ll T_{TR}$)
- Mn-based perovskites found with very low T_{OR}.
 - Implies $\Delta H_{reduction} \ll 450 \text{ kJ/mol O}$

- If T_{OR} < 850°C, then WS unfavorable or inefficient.
 - SFR data show O₂ during thermal reduction but no H₂ during WS
 - High H₂O/H₂ ratio required for reoxidation
- Mn-based perovskites yield large δ .

Need to raise T_{OR} above 865°C (SLMA's).

Ideal Material Bracketed Between CeO, and SLMA

- Thermodynamics determine favorable *and* efficient WS conditions:
 - ΔH and ΔS strong functions of composition (δ) for non-stoichiometric oxides
- Desirable to span the largest possible $\Delta\delta$ range with lowest H₂O/H₂ ratio.
- We are confident that a perovskite can be found that will achieve the DOE 2020 STH efficiency target.

Maximizing Efficiency: Improved Models to Target Optimal Operation

- Issue: Large fixed $\Delta T (T_{TR}-T_{WS})$ not optimal.
- Solution: Comprehensive efficiency model developed to identify optimal conditions. Includes losses and ALL mechanical work.
- Result: Higher efficiency possible at ΔT_{opt} .

С

0,

 H_2O

Η,

1300 C

ahoratories

• No credit taken for high-quality waste heat.

Chemistry Chemical Physics, 2014, 16, 8418

 DOE 20% STH efficiency target achievable in CeO₂ cycle at:

 p_{TR}<10 Pa
 T_{TR}=1500°C

- T_{ws}~1300°C
- heat recovery at T>1000°C

Maximizing Efficiency: Advancing Reactor Design to Lower p_{TR}

- Challenge: Large volumetric O₂ flows at low p_{TR} exceed practical pumping speeds.
- Solution: An improved, cascading pressure design, with multiple thermal reduction chambers at successively lower p_{TR}.
- Result: >10x lower achievable p_{TR}.
- Our existing moving packed particle bed concept ideally suited for a practical pressure cascade implementation.

 Required p_{TR}<10 Pa comfortably achievable in a cascading pressure design.

Maximizing Efficiency: Combining Advanced Materials and Reactors

- Ceria challenges: High T_{TR}=1500°C; High optimal T_{WS}~1300°C; High-T heat recovery required (solid and gas).
- Solution: Replace ceria with SLMA materials.
- Result: High efficiency achievable under much less demanding conditions.

Engineering Test Stand Design and Construction

- Gen. 2 test stand to evaluate key reactor concepts under <u>vacuum</u> and <u>increased</u> <u>temperature</u> conditions.
- Design adapted to most recent modeling and material developments.
- Design compatible with heat recovery, but emphasis on low p_{TR}.
- Will become part of a fully functional reactor.
- Large rotary vacuum seals successfully tested to pressures well below those required in reactor operation.

Laboratories

Toward the Limits: Reactor-Material Design Synergy

Technical Accomplishments and Progress High Flux Mirror Testing for Beam-Down Optic

- 1 mm back-silvered heliostat mirror.
 - Bonded to a simple water-cooled heat exchanger
- Two flux levels tested.
 - 80 and 120 suns
 - Non-uniform solar flux
 - Temperatures measured with thermocouples and IR camera

	80 SUNS	120 SUNS	
LUCATION	TEMP (°C)		
Mirror Center Surface	29.4	35.4	
Max Back Side	22.3	27.0	
Min Back Side	21.2	23.5	
Water Coolant	17.5	17.5	

 Water cooled beam-down optic operates successfully at high solar flux.

Bucknell's solar simulator

- Prof. Nathan Siegel at Bucknell University.
 - Solar interface, systems and economic analysis
- Prof. Jianhua Tong at the Colorado School of Mines.
 - Perovskite synthesis and TGA screening
- Prof. Alan Weimer at the University of Colorado.
 - Students in residence at SNL/CA characterizing both Sandia and CU materials
 - Dr. Darwin Arifin, completed his PhD thesis at Sandia
 - Mr. Chris Muhich and Ms. Kayla Weston, hercynite studies

Proposed Future Work

Dependent on continued DOE out year funding:

- Material discovery, screening, and characterization using theory and experiment.
 - Continue with perovskites
 - Investigate non-ferrite metal oxides undergoing a solid-solid phase change that liberates oxygen (a new direction)
 - Develop a solid-state coulometric titration experiment for measuring thermodynamic data on new redox active materials
- Implement a durability testing protocol for redox active materials.
 - Develop an experimental platform for rapid cycling and aging studies
- Integrate multiple thermal reduction chambers and a solar interface into the engineering test stand.
- Expand Sandia's theoretical efficiency model to allow exploration/optimization of ideal materials and integrate solar receiver configurations.
 - Increase the fidelity of subcomponent models
- Design centralized tower and field configurations compatible with multiple thermal reduction chambers.
 - Evaluate beam-down vs. beam-up optics

Summary

- Analyzed H₂ production costs for a centralized receiver-based particle reactor.
 - 100,000 kg H₂/day, DOE's ultimate cost targets are achievable
 - Sensitivity analysis reveals the importance of STH efficiency
- Discovered more redox active Mn- and Fe- based perovskite formulations .
 - Synthesized and screened 30 compounds, none perform better than SLMA
- Established and refined material performance metrics.
 - Ideal material behavior is bracketed by two existing compounds, CeO₂ and SLMA.
- Developed a novel cascading pressure reactor concept that enables ultra low vacuum during reduction.
- Analyzed efficiency of Sandia particle reactor under various operating conditions.
 - Identified operating conditions that establish optimal η_{STH} for CeO $_2$ and SLMA.
 - Determined that DOE 2020 technical targets for STCH can be achieved in a two-step high temperature thermochemical cycle.
- Continue to refine the design requirements for a beam-down optical system for particle reactor operating at \sim 5 MW_{TH}.

FY14 Accomplishments represent significant progress towards overcoming technical barriers to STCH development.

Technical Back-Up Slides

System Level View

Optical ~ 80% Reflectivity = 93% (two reflections) Soiling = 95% Window transmission = 95% Aperture intercept = 95%

Receiver ~ 82% Radiation = 82% Conduction/Convection = 0 %

Peak Solar-to heat:

~65%

Experimental Methods for Characterizing Redox Materials

- Surface analysis.
 - Surface Raman, XPS
- Material properties.
 - BET surface area
 - SEM-EDX, TEM-EELS, XRD
- Kinetic measurements.
 - Stagnation flow reactor
 - 500 W CW NIR laser heatin
 - Modulated beam mass spectrometer
- Screen for O₂ uptake and release.
 - Assess redox viability
- Resolve thermal reduction behavior.
- Resolve water splitting behavior.
 - Variable T, P, [H₂O]
- Analysis.

Sandia National

aboratories

- Resolve rate limiting mechanisms
- Develop kinetic models
- Evaluate material stability
- Test cycle performance

Ceria vs. SLMA6464: Efficiency Comparison

Pumping Limitations in a Single-Chambered Reactor

- Thermal reduction pressure, p_{TR}, is limited by the O₂ flow speed when pumped out of the thermal reduction chamber(s).
- In a single-chambered design, this limits p_{TR} to values above 10 Pa.

• Multi-chambered cascading pressure design required to achieve low p_{TR}.

Isothermal Water Splitting (ITWS)

 ITWS can be described using solely water thermodynamics, with no material or reactor assumptions:

Seemingly easier, ITWS is challenging and inefficient

