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Timeline 

Budget 

Barriers Addressed 

Partners 

Overview 

• Project Start Date:  10/2008 
• Project End Date:  10/01/2014* 

• Project Complete:  TBD 

• Total DOE project value. 
$5487K (2008-2014) 

• Funding for FY14. 
$550K (SNL) 

• Planned Funding for FY15. 
$650K (SNL) 

• Cost share. 
20% contractors, 0% SNL 

• S: High-Temperature Robust 
Materials. 

• T: Coupling Concentrated Solar 
Energy and Thermochemical Cycles. 

• X. Chemical Reactor Development 
and Capital Costs. 

• AC: Solar Receiver and Reactor 
Interface Development. 

• Bucknell University, Lewisburg PA. 
Prof. Nathan Siegel 

• Colorado School of Mines, Golden CO. 
Prof. Jianhua Tong 

• University of Colorado, Boulder CO. 
Prof. Alan Weimer 

*Project continuation and direction determined annually by DOE. 
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•DOE Objective: By 2015, verify the potential for solar thermochemical (STCH) cycles 
for hydrogen production to be competitive in the long term and by 2020, develop 
this technology to produce hydrogen with a projected cost of $3.00/gge at the plant 
gate. 

• Project Objective: Develop a high-temperature solar-thermochemical reactor 
and redox materials for efficient hydrogen production based on a two-step, non-
volatile metal oxide cycle.  

• 2013-2014 Objectives: 
• Discover and characterize suitable perovskite materials for two-step, non-

volatile metal oxide thermochemical cycles. 

• Develop particle receiver-reactor concepts and assess feasibility. 

• Construct and test a reactor prototype. 

• 2013 Achievements: 

• Discovered Sr0.6La0.4Mn0.6Al0.4O3 (SLMA) perovskite that exhibits better 
water-splitting (WS) cycle performance than both CeO2 and ferrites. 

• Demonstrated that oxide reduction under vacuum is the best way to achieve 
DOE 2020 target for STH efficiency. 

Relevance 
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Approach 

Technical Efforts Target Three Key Areas 

• Systems analysis. 
– Refine estimates for H2 production cost using H2Av3 

• Materials discovery and characterization. 
– Tune material properties with perovskite oxides 

a very large composition-property space exists! 
 
 
 

 
• Reactor design and development. 

– Particle reactor with novel beam-down optics 
– Reactor design and material are critically linked 

• Three-pronged approach to develop solar thermochemical H2 production 
technology that meets all DOE R&D targets. 



5  

Approach 

Summary of FY13 Reviewer Comments 
• Reviewers agree that our FY13 technical approach, facilities, project 

planning, and achievements were exemplary. 
– Discovery of redox-active perovskite a “major leap forward” 
– Vacuum reduction of oxide a “game changer” 
– “DOE’s goals for hydrogen production costs [seem] achievable” 

• Specific programmatic and technical concerns. 
– Research not balanced between material discovery and reactor development 
– High temperature effects on moving reactor parts and particles not addressed 
– Operation at high temperature has not been demonstrated 

• Response. 
– Opinions seem to vary, some favor more materials work and less reactor 

design, others the opposite. We believe the program is well balanced. 
– From a materials viewpoint, two-step water splitting cycles have been 

demonstrated at high temperature. 
– From a reactor viewpoint, we are methodically marching towards 

demonstrating high temperature operation in the engineering test stand. Thus 
far we have not encountered any show stoppers. 
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Approach 

Milestones and Progress 

ACTIVITY MILESTONE COMPLETE 

Analyze the hydrogen production cost 
from a particle reactor on a centralized 
receiver using the H2Av3 tool. 

Analyzed 100,000 kg H2/day centralized receiver-based facility using CeO2 and 
SLMA perovskite oxide, sensitivity analysis reveals reactor efficiency is a critical 
cost driver. Demonstrated a clear R&D path towards achieving $2/kg H2 ultimate 
cost target for hydrogen production. 

90% 

Synthesize a small number of 
candidate perovskite oxide redox 
materials. 

Sol-gel method used to synthesize ~2g quantities of 30 perovskite formulations 
from 7 different Mn- and Fe-based families. 65% 

Characterize the thermodynamic and 
kinetic performance of redox materials. 

30 new perovskites screened using TGA protocol, conducted detailed kinetic 
studies on 6 material formulations and hercynite. 50% 

Derive a thermodynamic model for one 
SLMA (Sr1-xLaxMn1-yAlyO3 ) perovskite 
compound. 

Measured PO2-T-δ for SLMA6464 using TGA and derived a thermodynamic model 
used to predict STH efficiency in Sandia’s particle reactor. 100% 

Discover redox active perovskites that 
exceed SLMA performance. 

None of the 30 novel perovskite formulations improved the solar-thermochemical 
H2 performance baselines established by SLMA (discovered last year). 50% 

Theoretically analyze Sandia particle 
reactor performance using SLMA. 

Predicted the optimal operating temperature (∆T), O2 pressure (vacuum), and 
heat recovery effectiveness required to meet or exceed a STH conversion ratio 
greater than the 2020 target of 20%. 

100% 

Design and construct an engineering 
test stand of particle reactor without 
solar interface. 

Designed, built, and tested a vacuum seal and bearing that enables chamber 
rotation that can maintain <10 Pa vacuum during full-speed rotation. This is well 
below the first chamber design pressure of 100 Pa. Finalized designs for major 
engineering test stand components, complete construction by June. 

60% 

Design central-receiver based H2 
production plant upon which to base 
H2Av3 analysis. 

Designed H2 production plant including solar field, receiver-reactor, and balance 
of plant based on SLMA perovskite redox chemistry. Plant sized for 100,000 kg 
H2/day. 

90% 

03.2013-03.2014 Accomplishments  
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Approach 

Reactor and Materials Innovation 

• We continue to overcome technical 
barriers to implementing high-temperature 
solar thermochemical H2 production. 

– Developed a novel cascading pressure 
design concept that achieves very low O2 
pressures during reduction. 

– Developed novel perovskite formulations 
that lower the required thermal reduction 
temperature. 

– Combined reactor designs and material 
formulations that achieve optimal STH 
efficiency. 

– Striving to reduce the dependence on high-
temperature solid-solid heat recovery. 

• Advancing solar H2 production technology through 
materials and engineering innovation. 
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Technical	
  Accomplishments	
  and	
  Progress	
  

H2Av3	
  Analysis	
  of	
  100,000	
  kg	
  H2/Day	
  Plant	
  
•  Central	
  receiver-­‐based	
  par:cle	
  reactor.	
  

–  260	
  towers	
  @	
  4.2	
  MWTH/tower	
  over	
  3.5	
  km2	
  
–  Meteorological	
  data	
  for	
  Daggei,	
  CA	
  

annual	
  collec/on	
  efficiency:	
  51.6%	
  
–  Analyzed	
  3	
  cases:	
  

2015,	
  2020,	
  and	
  ul/mate	
  cost	
  targets	
  
•  H2	
  cost	
  dominated	
  by	
  capital	
  cost.	
  

•  Ul:mate	
  cost	
  target	
  of	
  ~$2/kg	
  H2	
  achieved.	
  
–  STH	
  efficiency	
  of	
  27%	
  
–  75%	
  decrease	
  in	
  capital	
  and	
  O&M	
  costs	
  

rela:ve	
  to	
  2015	
  case	
  

•  STH efficiency linked to capital cost (i.e., determines number of heliostats, 
towers, particle reactors, heat exchangers, etc.). 

•  High STH efficiency critically important to meeting DOE cost targets. 



9  

Technical Accomplishments and Progress 

Thermodynamic Model for SLMA 

• PO2-δ-T relationship measured 
using TGA. 

– 18 orders of magnitude in PO2
 

– 1073K < T < 1673K 
– 0 < δ < 0.35 

• O2-SLMA solid solution model. 
– Electrons delocalized 
– O-vacancies randomly distributed 
– Non-ideal ∆Hoxid(δ) 

• Fit ∆Hoxid, ∆Soxid, and ‘a’ to PO2, δ, 
and T. 

• Model predicts high STH efficiency for SLMA in Sandia’s particle reactor. 
• δ > 0.3 for SLMA uncommonly large (yields high H2 capacity). 

δ is a measure of oxygen 
deficiency in ABO3-δ perovskites 
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Technical Accomplishments and Progress 

The Search Continues for a Perovskite 

• Synthesized 30 perovskites from Mn- and 
Fe-based B-site families. 

– Sol-gel method 
• Identified promising candidates using 

TGA screening. 
– TTR=1350°C for 1.5 hr in Ar 
– TWS=1000°C for 1.5 hr, 40 vol.% H2O 

• Detailed kinetic measurements on 6 
materials in Sandia’s laser-heated 
stagnation flow reactor (SFR). 

– Onset temperature for reduction 
– O2 uptake-and-release 
– Water-splitting (WS) activity 

• Found several redox-active 
perovskites with TTR < CeO2 and 
δ > CeO2. 
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Technical Accomplishments and Progress 

Established Threshold for Reduction Temperature  

• TOR = O2 onset temperature for 
thermal reduction. 

– Different than TTR (usually TOR << TTR) 
• Mn-based perovskites found with 

very low TOR. 
– Implies ∆Hreduction << 450 kJ/mol O 

• If TOR < 850°C, then WS unfavorable 
or inefficient. 

– SFR data show O2 during thermal 
reduction but no H2 during WS 

– High H2O/H2 ratio required for re-
oxidation 

• Mn-based perovskites yield large δ. 

• Need to raise TOR above 865°C (SLMA’s). 

TOR 
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Technical Accomplishments and Progress 

Ideal Material Bracketed Between CeO2 and SLMA 

• Thermodynamics determine favorable and efficient WS conditions: 
– ∆H and ∆S strong functions of composition (δ) for non-stoichiometric oxides 

• Desirable to span the largest possible ∆δ range with lowest H2O/H2 ratio. 

• We are confident that a perovskite can be found that will achieve the DOE 
2020 STH efficiency target. 

IDEAL: 
850°C<TOR<1200°C 
750°C<TWS<900°C 

∆δ ~ 0.3 
H2O/H2 < 20 

RateWS ~ CeO2 

∆δ range 

ηSTH limited by 
oxide heating. 

ηSTH limited by 
steam heating. Optimal ηSTH. 
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Technical Accomplishments and Progress 

Maximizing Efficiency: Improved Models to Target Optimal Operation 
• Issue: Large fixed ∆T (TTR-TWS) not optimal. 
• Solution: Comprehensive efficiency model 

developed to identify optimal conditions. 
Includes losses and ALL mechanical work. 

• Result: Higher efficiency possible at ∆Topt. 
• No credit taken for high-quality waste heat. 

CeO2 cycle, LHV basis 
TTR=1500
 

C 
εR=50% (entire T-range) 
εGG=50% (>1000
 

C) 
εGG=97% (<1000
 

C) 

pTR 

CeO2 cycle, LHV basis 
TTR=1500
 

C 
εR=0 (entire T-range) 
εGG=0 (>1000
 

C) 
εGG=97% (<1000
 

C) 

pTR 

∆Topt 

∆Topt 

∆T fixed to 400 K in 
earlier models 

I. Ermanoski, J. E. Miller and M. D. Allendorf, Physical 
Chemistry Chemical Physics, 2014, 16, 8418 
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• DOE 20% STH efficiency 
target achievable in CeO2 
cycle at: 
- pTR<10 Pa 
- TTR=1500°C 
- TWS~1300°C 
- heat recovery at T>1000°C 

 
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Technical Accomplishments and Progress 

Maximizing Efficiency: Advancing Reactor Design to Lower pTR 

• Challenge: Large volumetric O2 flows at low 
pTR exceed practical pumping speeds. 

• Solution: An improved, cascading pressure 
design, with multiple thermal reduction 
chambers at successively lower pTR. 

• Result: >10x lower achievable pTR. 
• Our existing moving packed particle bed 

concept ideally suited for a practical pressure 
cascade implementation.  

• Required pTR<10 Pa comfortably 
achievable in a cascading pressure 
design.   
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Technical Accomplishments and Progress 

Maximizing Efficiency: Combining Advanced Materials and Reactors 

• Ceria challenges: High TTR=1500°
 

C; High 
optimal TWS~1300°

 
C; High-T heat 

recovery required (solid and gas). 
• Solution: Replace ceria with SLMA 

materials. 
• Result: High efficiency achievable under 

much less demanding conditions. 

SLMA6464 cycle, LHV basis 
TTR=1450°
 

C 
εR=50% (entire T-range) 
εGG=50% (>1000°
 

C) 
εGG=97% (<1000°
 

C) 

pTR 

pTR SLMA6464 cycle, LHV basis 
TTR=1450°
 

C 
εR=0% (entire T-range) 
εGG=0% (>1000°
 

C) 
εGG=97% (<1000°
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• DOE 20% STH efficiency 
achievable in SLMA6464 
cycle at: 
- pTR<10 Pa 
- TTR=1450°C 
- TWS~800°C-1000°C 
- NO high-T heat recovery 

 
ST

H 
Ef

fic
ie

nc
y 

[%
] 



16  

Technical Accomplishments and Progress 

Engineering Test Stand Design and Construction 
• Gen. 2 test stand to evaluate key reactor 

concepts under vacuum and increased 
temperature conditions. 

• Design adapted to most recent modeling 
and material developments. 

• Design compatible with heat recovery, 
but emphasis on low pTR. 

• Will become part of a fully functional 
reactor.  

• Large rotary vacuum seals 
successfully tested to 
pressures well below those 
required in reactor operation.  

 
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pTR material X cycle, LHV basis 
TTR=1350°
 

C 
εR=25% (entire T-range) 
εGG=25% (>1000°
 

C) 
εGG=90% (<1000°
 

C) 

Technical Accomplishments and Progress 

Toward the Limits: Reactor-Material Design Synergy 

• Q: How to realize the full efficiency potential 
of solar-thermochemical H2 production? 

• A: By concurrent and intimately coupled 
reactor and material development. 

Material 
discovery and 

characterization 

Detailed 
reactor/material 

models 

Reactor 
construction 

and operation 

Hypothetical material X 
thermodynamic characteristics 
are bracketed by CeO2 and SLMA 

CeO2 

SLMA6464 

Hypothetical material X 

ST
H 

Ef
fic

ie
nc

y 
[%

] 

• When suitable materials are found STH 
efficiency ~25-35% will be feasible. 
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Technical Accomplishments and Progress 

High Flux Mirror Testing for Beam-Down Optic 
• 1 mm back-silvered heliostat mirror. 

– Bonded to a simple water-cooled 
heat exchanger 

• Two flux levels tested. 
– 80 and 120 suns 
– Non-uniform solar flux 
– Temperatures measured with 

thermocouples and IR camera 

Bucknell’s solar simulator 

• Water cooled beam-down optic 
operates successfully at high 
solar flux. 
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FY14 Collaborations 

• Prof. Nathan Siegel at Bucknell University. 
– Solar interface, systems and economic analysis 

 
• Prof. Jianhua Tong at the Colorado School of Mines. 

– Perovskite synthesis and TGA screening 
 

• Prof. Alan Weimer at the University of Colorado. 
– Students in residence at SNL/CA characterizing both Sandia 

and CU materials 
Dr. Darwin Arifin, completed his PhD thesis at Sandia 
Mr. Chris Muhich and Ms. Kayla Weston, hercynite studies 
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Proposed Future Work 

Dependent on continued DOE out year funding: 
 

• Material discovery, screening, and characterization using theory and experiment. 
– Continue with perovskites 
– Investigate non-ferrite metal oxides undergoing a solid-solid phase change that 

liberates oxygen (a new direction) 
– Develop a solid-state coulometric titration experiment for measuring thermodynamic 

data on new redox active materials 
• Implement a durability testing protocol for redox active materials. 

– Develop an experimental platform for rapid cycling and aging studies 
• Integrate multiple thermal reduction chambers and a solar interface into the 

engineering test stand. 
• Expand Sandia’s theoretical efficiency model to allow exploration/optimization of 

ideal materials and integrate solar receiver configurations. 
– Increase the fidelity of subcomponent models 

• Design centralized tower and field configurations compatible with multiple 
thermal reduction chambers. 

– Evaluate beam-down vs. beam-up optics 
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Summary 

• Analyzed H2 production costs for a centralized receiver-based particle reactor. 
– 100,000 kg H2/day, DOE’s ultimate cost targets are achievable 
– Sensitivity analysis reveals the importance of STH efficiency 

• Discovered more redox active Mn- and Fe- based perovskite formulations . 
– Synthesized and screened 30 compounds, none perform better than SLMA 

• Established and refined material performance metrics. 
– Ideal material behavior is bracketed by two existing compounds, CeO2 and SLMA. 

• Developed a novel cascading pressure reactor concept that enables ultra low 
vacuum during reduction. 

• Analyzed efficiency of Sandia particle reactor under various operating conditions. 
– Identified operating conditions that establish optimal ηSTH for CeO2 and SLMA. 
– Determined that DOE 2020 technical targets for STCH can be achieved in a two-step 

high temperature thermochemical cycle. 
• Continue to refine the design requirements for a beam-down optical system for 

particle reactor operating at ~5 MWTH.  

FY14 Accomplishments represent significant progress towards 
overcoming technical barriers to STCH development. 
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Technical Backup 

Technical Back-Up Slides 
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Technical Backup 

System Level View 

Optical ~ 80% 
Reflectivity = 93% (two reflections) 

Soiling = 95% 
Window transmission = 95% 

Aperture intercept = 95% 

Receiver ~  82% 
Radiation = 82% 

Conduction/Convection = 0 %    

Peak Solar-to heat: 
~65% 
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Technical Backup 

• Surface analysis. 
– Surface Raman, XPS 

• Material properties. 
– BET surface area 
– SEM-EDX, TEM-EELS, XRD 

• Kinetic measurements. 
– Stagnation flow reactor 

• 500 W CW NIR laser heating 
• Modulated beam mass spectrometer 

• Screen for O2 uptake and release. 
– Assess redox viability 

• Resolve thermal reduction behavior. 
• Resolve water splitting behavior. 

– Variable T, P, [H2O] 
• Analysis. 

– Resolve rate limiting mechanisms 
– Develop kinetic models 
– Evaluate material stability 
– Test cycle performance 

Experimental Methods for Characterizing Redox Materials 



25  

Technical Backup 

Ceria vs. SLMA6464: Efficiency Comparison 
CeO2 cycle, LHV basis 
TTR=1500°
 

C, TWS~1300°
 

C 
εR=50% (entire T-range) 
εGG=50% (>1000°
 

C) 
εGG=97% (<1000°
 

C) 

pTR 

CeO2 cycle, LHV basis 
TTR=1500°
 

C, TWS~1300°
 

C 
εR=0 (entire T-range) 
εGG=0 (>1000°
 

C) 
εGG=97% (<1000°
 

C) 

pTR 

∆Topt 

∆Topt 

SLMA6464 cycle, LHV basis 
TTR=1450°
 

C, TWS<1000°
 

C 
εR=50% (entire T-range) 
εGG=50% (>1000°
 

C) 
εGG=97% (<1000°
 

C) 

pTR 

pTR SLMA6464 cycle, LHV basis 
TTR=1450°
 

C, TWS<1000°
 

C 
εR=0% (entire T-range) 
εGG=0% (>1000°
 

C) 
εGG=97% (<1000°
 

C) 
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Technical Backup 

Pumping Limitations in a Single-Chambered Reactor 
• Thermal reduction pressure, pTR, is 

limited by the O2 flow speed when 
pumped out of the thermal reduction 
chamber(s). 

• In a single-chambered design, this 
limits pTR to values above 10 Pa. 

TRH

STRB
O pHHV

QRTC
v 1

*2
*

2
2

η
=

speed of sound in O2 at 1500°
 

C 

• Multi-chambered cascading pressure 
design required to achieve low pTR. 
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Technical	
  Backup	
  

Isothermal	
  Water	
  Spligng	
  (ITWS)	
  
•  ITWS	
  can	
  be	
  described	
  using	
  solely	
  water	
  thermodynamics,	
  with	
  no	
  material	
  or	
  

reactor	
  assump:ons:	
  

I.	
  Ermanoski,	
  J.	
  E.	
  Miller	
  and	
  M.	
  D.	
  Allendorf,	
  Physical	
  
Chemistry	
  Chemical	
  Physics,	
  2014,	
  16,	
  8418	
  

nw/h: water to H2 ratio 
in output stream  

•  Seemingly easier, ITWS is challenging and inefficient 




