2014 DOE Hydrogen and Fuel Cells AMR

Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Oct. 2010
- Project end date: Sep. 2015

Barriers

- Barriers addressed
 - F. Gaseous hydrogen storage and tube trailer delivery cost
 - G. Storage tank materials and costs

Partners

- Budget
- Total Funding Spent: \$2,050K*
- Total Project Value: \$3,600K
- FY14 DOE Funding: \$80K
- Cost Share %: 20%

• Interactions / collaborations

- Global Engineering and Technology
- Ben C. Gerwick, Inc.
- University of Michigan
- MegaStir Technologies
- ArcelorMittal
- ASME
- U.S. Department of Transportation
- Project lead
 - Oak Ridge National Laboratory (ORNL)

*as of 3/31/2012

<u>Relevance</u> – Technology Gap Analysis for Bulk Storage in Hydrogen Infrastructure

Gaseous Hydrogen Delivery Pathway *

Managed by UT-Battelle

- 3 for the U.S. Department of Energy
- * Adapted from DOE's Hydrogen Delivery, in Multi-Year Research, Development and Demonstration Plan, 2007

Bulk storage in hydrogen delivery infrastructure *

- Needed at central production plants, geologic storage sites, terminals, and refueling sites
- Important to provide surge capacity for hourly, daily, and seasonal demand variations

Technical challenges for bulk storage

- Current industry status: pressure vessel made of low alloy steels
- Safety concern: hydrogen embrittlement to steels due to long-term H₂ exposure
- High capital cost especially for highpressure storage

Project Objectives

- Address the significant safety and cost challenges of the current industry standard steel pressure vessel technology
- Develop and demonstrate the steel/concrete composite vessel (SCCV) design and fabrication technology for stationary storage system of high-pressure hydrogen that meet DOE technical and cost targets

Table 3.2.4 Technical Targets for Hydrogen Delivery Components *						
Category	2005 Status	FY 2010 Status	FY 2015 Target	FY 2020 Target		
Stationary Gaseous Hydrogen Storage Tanks (for fueling sites, terminals, or other non- transport storage needs)						
Low Pressure (160 bar) Purchased Capital Cost (\$/kg of H ₂ stored)	\$1000	\$1000	\$850	\$700		
Moderate Pressure (430 bar) Purchased Capital Cost (\$/kg of H ₂ stored)	\$1100	\$1100	\$900	\$750		
High Pressure (860 bar) Purchased Capital Cost (\$/kg of H ₂ stored)	N/A	\$1,450	\$1,200	\$1000		

* DOE FCT Multi-Year Plan updated 2-2013

http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/

Managed by UT-Battelle

4 for the U.S. Department of Energy

- By 2015: about 17% reduction
- By 2020: about 31% reduction

<u>Approach</u>: Steel/Concrete Composite Vessel (SCCV) for High-Pressure H₂ Storage

SCCV Integrates Four Major Innovations

- Modular design of hydrogen storage system
 - Flexibility for scalability
 - Flexibility for cost optimization
 - System reliability and safety
 - Individual vessels are self contained and monitored.
 Can be shut-down individually to reduce the overall impact
- Composite steel/concrete storage vessel for cost reduction
 - An inner multi-layered steel vessel encased in a pre-stressed outer concrete reinforcement
 - Use of cost-effective commodity materials (concrete and steel)
- Novel inner steel vessel design to eliminate hydrogen embrittlement problem <u>by design</u>
- Advanced fabrication and sensor technologies for cost reduction and improved operation safety

Multi-layered Inner Steel Vessel – Eliminating HE *by Design*

 A multi-layer design with strategically placed vent holes to prevent the intake and accumulation of hydrogen in the steel layers except the innermost layer

- Except the SS liner. Also used for embedded sensor connection
- Sensor can be attached to the surface of each layer (except the inner surface of the first layer)

Managed by UT-Battelle

Hydrogen Mitigation Concept for Multi-Layered Inner Steel Vessel

- Small vent ports are created on the 2nd and all the outer layers of the vessel without sacrificing the structure's mechanical integrity.
- Hydrogen migrated through the innermost layer will pass through the vent ports, resulting in little or no pressure buildup in the other layers. Thus, hydrogen embrittlement is mitigated <u>by</u> <u>design</u> in the layered low alloy steel vessel.

Managed by UT-Battelle

SCCV

- Can be designed and constructed using mature and proven fabrication technologies accepted by pertinent codes/standards
 - Steel inner vessel designed and built per ASME Boiler and Pressure Vessel (BPV)
 - Outer concrete reinforcement per American Concrete Institute (ACI)
- Safety and performance:
 - Layered design: **Leak before burst** (for avoiding catastrophic failure)
 - Steels and concretes:
 - Mechanical properties (e.g., static, fatigue and creep) well established
 - Tolerant to third-party damage
 - Many decades of construction and operation experience (e.g., inspection, maintenance, repair etc.)

FY2014 Milestones/Deliverables

- Validate that SCCV can reduce the cost of stationary hydrogen storage by more than 15% and meet the DOE MYRDD 2015 cost target of \$1200/kg-stored at 860 bar through detailed vessel design and supplier quotes (Q1)
- Develop the testing plan to validate the SCCV technology for highpressure hydrogen services, to pass (1) ASME pressure vessel requirement and (2) a 500 cyclic loading test representative of 430 bar high-pressure hydrogen charging and discharging operation conditions. Identify the testing sites. (Q3)
- Complete construction of the inner steel vessel of a mock-up SCCV rated at DOE MYRDD moderate pressure level (430bar) and 90 kg of H₂, to demonstrate the design, engineering and manufacturing technology for SCCV (a long-lead item). (Q4)

Accomplishment: SCCV Cost Analysis

- With the support of industry partners, we successfully completed a high-fidelity manufacturing cost analysis and demonstrated that the SCCV technology can exceed the relevant cost targets set forth by DOE
- Reference SCCV design: 50/50 load carrying ratio, 1500kg H₂ in moderate volume production (24 identical vessels per order)
- Details of cost analysis in ORNL Technical Report ORNL/TM-2013/113

Managed by UT-Battelle

11 for the U.S. Department of Energy

Lessons Learned from The Detailed Cost Analysis/Optimization

 50/50 concrete/steel design is the most cost effective in the current design

- Many options have been identified for considerable <u>further</u> cost reduction
 - Hydrogen permeation barrier
 - Steel vessel design
 - Concrete reinforcement design
 - Novel sensor technologies

Case 2: 50% Steel + 50% Concrete

Pre-stressed concrete sleeve carrying 50% of hoop stress

<u>Accomplishment:</u> H₂ Permeation Experiment Validating Hydrogen Mitigation Technology

Layered specimen design

- A hydrogen permeation apparatus designed to confirm the effectiveness of novel hydrogen mitigation technology
- The specimen has a layered structure and designed to fit into a H₂ pressure cell
- Diffusible H₂ collected through each layer provides quantitative measure of the effectiveness of the novel design concept

Managed by UT-Battelle 13 for the U.S. Department of Energy

Testing Results at 150C, 2000Psi H₂

- Minimum measurement resolution is 0.01ml; each data point collected a minimum of 0.1ml H₂.
- H₂ permeation rate through the 2nd layer was reduced more than 95%

Theoretical Analysis of Permeation Rate

- According to Sievert's law, the permeation rate is proportional to the square root of pressure
- Intake pressure in the first layer: ~2000psi
- Intake pressure in the second layer: ~1atm (14psi) max. In reality, it would be much lower

$$\frac{\sqrt{14}}{\sqrt{2000}} = \frac{3.74}{44.72} = 8.3\%$$

- Only ~8% of hydrogen will diffuse into the second layer, and ~0.5% into the third layer
- The reduction is even higher for higher inner pressure (~4% at 8000psi)
- This means the steel inner vessel is designed to eliminate hydrogen
 embrittlement

Managed by UT-Battelle 15 for the U.S. Department of Energy

Accomplishment: Development of a Low Cost, High H₂ Pressure Low Frequency Fatigue Test

- Utilizing pressure differential in two hydrogen chambers to apply the cyclic loading
- Mimic hydrogen vessel/pipeline operating conditions
 - Very low frequency @ several cycles per day,
 - Effect of hydrogen pressure variations
- Low cost and compact system
 - Simultaneous testing with multiple systems (tens even hundreds) to generate the fatigue data
- US Patent No. 8,453,515B2
- Co-sponsored by US Department
 of Transportation

46

6

26

Time (second)

16 for the U.S. Department of Energy

<u>Accomplishments</u> - Fabrication Technology for Layered Steel Vessel: Multi-Layer, Multi-Pass Friction Stir Welding

Superior Charpy impact properties, much higher than the base metal

Grain refinement results in improvement in mechanical properties

Managed by UT-Battelle 17 for the U.S. Department of Energy

A572 Grade 50 steel

Multi-Layer, Multi-Pass Friction Stir Welding Scale-Up

- 6-layer, 1.50-in thick welds have been successfully produced
- Full scale mechanical property testing confirmed the effectiveness of layered structure to avoid catastrophic failure
- SA-516 Grade 70

Demonstration: Mock-Up SCCV Design

- Design, engineering and manufacturing a small but representative mock-up SCCV (1/4 – 1/5 size), capturing all major features of SCCV design and fabricatability with today's manufacturing technologies and code/standard requirements
- Obtain "real-world" performance data
- A mock-up with manway is highly desired
 - Manway is typically needed in today's highpressure vessel applications
 5.5' (66")

3.83' (46"

Mock-up: Small

(~ 30 kg of H₂)

10.93'

Mock-up: Large

 $(\sim 90 \text{ kg of H}_2)$

6.33'

3'

- For internal inspection
- And repair

6

19

for the U.S. Department of E

Mockup SCCV Demonstration

- Design pressure: 6250 psi (430 bar)
- Code of construction for inner steel vessel: ASME Section VIII Division 2, 2013 edition
 - Steel: SA-765 Gr IV for head, SA-724 Gr B for layered shell
 - 3-mm thick 308/304 stainless steel liner
- ACI design allowables for pre-stressed concrete
- Hydro-static testing at 1.4 times of design pressure as part of code acceptance (8940psi, 615 bar)
- Cyclic hydrogen pressure loading to simulate service conditions
- Status
 - Inner steel vessel under construction
 - Fabrication specification of pre-stressed concrete completed
 - Concrete fabrication vendor identified

Managed by UT-Battelle 20 for the U.S. Department of Energy

Responses to reviewers' comments

- The opportunity to further reduce cost is important, cost impact of manway, steel head, etc
 - We have leaned a lot through this work. We have identified many options that could potentially lead to considerable further cost reduction. There options will be considered in the next generation SCCV design optimization.
- The only limitation preventing a rating of four here is the lack of concrete plans for the prototype testing phase
 - Test planning is a major task in FY14. The testing plan includes (1) code required hydro-static testing and (2) high-pressure cyclic H₂ loading. We have identified four potential testing sites that will be finalized by June, 2014 based on the cost, safety and schedule considerations.
- Installation cost
 - Installation cost varies greatly and is highly dependent on a number of factors location, location and location. We are working with California Fuel Cell Partnership on this subject.

Collaborations and Industry Participations

Partners / Interactions		Expertise and Extent of collaboration		
•	Global Engineering and Technology	Design, engineering and consulting firm specialized in high-pressure steel vessels		
•	Ben C. Gerwick, Inc.	Design, engineering and consulting firm specialized in pre-stressed concrete vessels		
•	University of Michigan	High-performance concretes		
•	MegaStir Technologies	Friction stir welding of thick steel sections		
•	ArcelorMittal	High-strength steels		
•	ASME (B31.12)	Relevant code committee on high-pressure hydrogen services		
•	DOT	Qualification of stationary storage vessel for high- pressure hydrogen		

Interactions with Industry

- Multiple Inquires from a number of company for potential applications of the technology
 - Underground storage
 - Development and application of ultra high-strength steels (beyond these in current ASME code)
- California Fuel Cell Partnership
 - Supporting hydrogen initiatives in California
 - Underground storage
- Beyond hydrogen storage

Remaining Challenges and Barriers

- Long lead construction leading time:
 - 6-9 months for inner steel vessel
 - 3-5 months for pre-stressed concrete reinforcement

Proposed Future Work

- FY14
 - Complete the mockup inner steel vessel construction
- FY15
 - Complete the outer pre-stressed concrete vessel, and deliver the entire mock-up SCCV vessel (430 bar and 90 kg H₂) for testing (Q1, FY15)
 - Complete testing of the mock-up SCCV under high-pressure hydrogen to demonstrate both the constructability and performance of the SCCV for hydrogen storage. Perform long-term evaluation of the mock-up SCCV performance under cyclic hydrogen loading (Q4, FY15)

FY16 and beyond:

 As a follow-on project, identify and apply SCCV for underground hydrogen storage for forecourt fueling stations to address a major and immediate cost factor in hydrogen delivery infrastructure

Project Summary

Relevance:	 Address the significant safety and cost challenges of the current industry standard steel pressure vessel technology Demonstrate the high-pressure storage vessel technology for CGH₂ that can meet or exceed the relevant DOE cost target 	
Approach:	 Integrated vessel design and fabrication technology: Use of commodity materials (e.g., steels and concretes) in SCCV Mitigation of hydrogen embrittlement to steels by design Advanced, automated manufacturing of layered steel tank 	
Technical Accomplishments	 A high fidelity design and manufacturing cost analysis demonstrated that the SCCV technology can exceed the relevant cost targets set forth by DOE Successfully validated the effectiveness of the novel hydrogen mitigation technology to prevent hydrogen entering the structural steel layer Multilayer-multipass friction stir welding technology can potentially further reduce the cost and improve the weld properties Technology demonstration is underway with a ¼ scale mockup SCCV 	
Collaborations:	Active partnership with industry, university and other stakeholders	
Future Plan:	 Complete the construction of mockup SCCV (Q1, FY15) Perform technology validation testing of SCCV under cyclic hydrogen service conditions (FY15) Technology demonstration and transfer (FY15/16) 	

Technical Backup Slides

Cost Analysis Modeling

Step #1	•	Engineering calculations based on relevant design codes (e.g., ASME BVP) to determine the vessel dimensions such as steel wall thickness, concrete wall thickness, etc.
	•	Dimensions constrained by typical capacity of industrial manufacturing facilities.
Step #2	•	Detailed, step-by-step manufacturing process flow for composite vessels
Step #3	•	 Cost estimation for each manufacturing step by considering: Materials, consumables, and labor
	•	 Basis for cost estimation: Vendor quotes Data from relevant fabrication projects by Global Engineering and Technology and Ben C. Gerwick, Inc.

Overview of Cost Analysis Approach

29 for the U.S. Department of Energy

Example: Cost Analysis for Inner Steel Tank

30 for the U.S. Department of Energy

NATIONAL CAR

Details of Mock-Up SCCV Design

munuged by OI Dutterie

Inner Steel Vessel Details

Managed by UT-Battelle 32 for the U.S. Department of Energy CAK RIDGE National Laboratory