

Improving Cyanobacterial O₂-Tolerance using CBS Hydrogenase for H₂ Production

2014 Annual Merit Review and Peer Evaluation Meeting June 19, 2014

Pin-Ching Maness, National Renewable Energy Laboratory

(PI; Presenter)

Project ID #: PD095

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Project start date: FY05 (not funded in FY06)
- Project end date: 10/2014*

Barriers

Barriers addressed

• Oxygen Accumulation (AP)

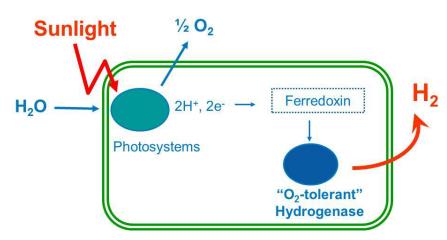
Budget

- FY13 DOE Funding: \$350K
- Planned FY14 DOE Funding: \$350K
- Total DOE Project Value: \$2.21M

Partners

- Dr. Phil Weyman, J. Craig Venter Institute
- Dr. Jin Chen, Michigan State University
- Dr. Jonas Korlach , Pacific Biosciences

*Project continuation and direction determined annually by DOE

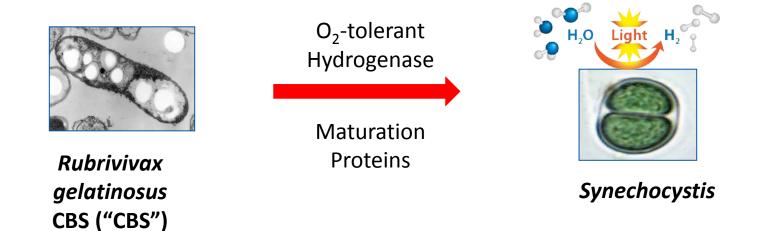

Objective/Relevance

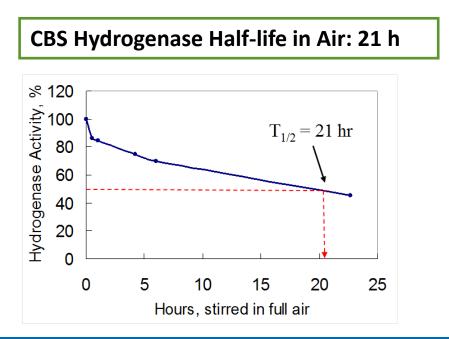
Objective:

Develop a robust O_2 -tolerant cyanobacterial system for light-driven H_2 production from water while increasing system durability. The long-term goal is to be O_2 tolerant for 8 hours (during daylight hours).

Oxygen Accumulation (Barrier AP):

Along with H_2 , photolytic microbes such as algae and cyanobacteria co-produce O_2 , which inhibits the activity of hydrogenase, the enzyme responsible for H_2 production.




Cyanobacterial Recombinant

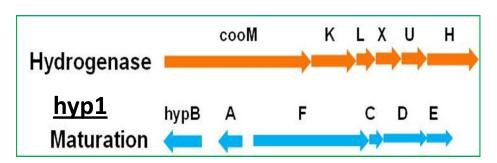
Technical Target

Characteristics	Unit	2011 status	2015 Target	2020 Target	Ultimate Target
Duration of continuous H ₂ production at full sunlight intensity	Time Unit	2 min	30 min	4 h	8h

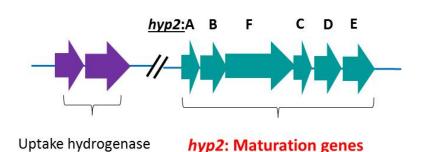
Objective/Relevance: Project Overview

Relevance:

- Task 1: Probe hydrogenase maturation machinery in CBS.
- **Task 2:** Expression of the CBS hydrogenase in *Synechocystis*


NREL's approach harnesses Nature's O_2 tolerant hydrogenase and its transfer into a model cyanobacterium with genetic tools.

Approach/Milestone


Task 1: Probe Hydrogenase Maturation Machinery in CBS

Approach: CBS contains two sets of hydrogenase maturation genes, *hyp1* and *hyp2*. This task aims to determine which set should be cotransformed with the hydrogenase structural genes to afford O₂-tolerant hydrogenase activity in *Synechocystis*. The approaches are:

- Homology comparison of hyp1 with hyp2, and with other known hyp genes
- Probing the function of *hyp1* and *hyp2* maturation genes via expression profiles & gene knockout
- Uncovering more hydrogenase maturation-related genes.

<u> O_2 -tolerant hydrogenase (evolving H_2)</u> <u> H_2 -uptake hydrogenase (oxidizing H_2)</u>

Milestones

Task 1: Probe Hydrogenase Maturation Machinery in CBS

	FY 14 Milestone – all regular	Completion Date	Status
Q1	Identify the CBS homologues of three hydrogenase maturation genes, <i>slyD</i> and <i>carAB</i> , through a targeted search of the CBS genome and comparison with those in <i>E. coli</i> , using Blast tool with 35% amino acid sequence identity	12/13	Complete
Q2	Provide detailed analysis of the CBS genome for genes encoding the O_2 -tolerant evolving hydrogenase, uptake hydrogenase, and the two sets of hydrogenase maturation genes, <i>hyp1</i> and <i>hyp2</i> . These data will provide the blueprint to guide genetic engineering effort toward constructing a <i>Synechocystis</i> recombinant harboring O_2 -tolerant hydrogenase activity.	3/14	Interim milestone; Complete
Q3	Through deletion of <i>hyp2ABFCDE</i> either in the wild type or $\Delta hyp1FCDE$ background, determine if <i>hyp2</i> increases total hydrogenase activity by 15% based on <i>in vitro</i> assay using reduced methyl viologen and is required for optimal hydrogenase activity; if so, <i>hyp2</i> will be co-transformed with <i>hyp1</i> into <i>Synechocystis</i> to assemble a more active CBS hydrogenase for increased H ₂ production.	6/14	Delayed from Q2 to Q3; On Track

Task 1 – Technical Accomplishments

Uncovered Additional Maturation Genes: slyD and carAB in CBS Genome

- *E. coli* is the working model for proteins involved and mechanism for NiFe-hydrogenase maturation
- In *E. coli, slyD* plays a role in Ni binding and Ni insertion into the hydrogenase NiFe-active site.
- A *slyD* homolog was identified in CBS, but not in *Synechocystis*, hence might warrant the expression of *slyD* in *Synechocystis*.
- *carAB* homologs are present in both CBS and *Synechocystis*, which synthesize the CN ligand for the hydrogenase NiFe-active site.

CBS	Identity to <i>E. coli</i> (%)	Identity to <i>Synechocystis</i> (%)	Function
SlyD	33	No identical homolog	Ni insertion
CarA	64	51	Synthesis of CN ligand for NiFe-active site
CarB	70	60	Synthesis of CN ligand for NiFe-active site

Summary: Complete FY14 Q1 Milestone. *slyD*, but not *carAB*, is a valid candidate for expression in *Synechocystis*.

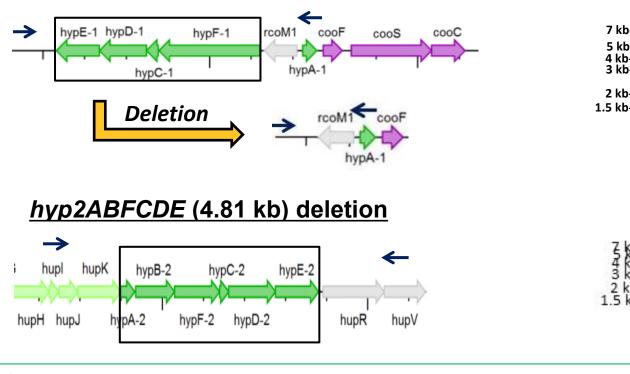
Carrie Eckert

Task 1 – Technical Accomplishments Homology Comparison of CBS *hyp1/hyp2* Genes

- CBS Hyp1 and Hyp2 proteins display low identity based on homology comparison.
- CBS Hyp2 proteins are more similar to the respective Hyp proteins in *Ralstonia eutropha* (*Re*), the latter proteins are known to assemble an uptake hydrogenase in *Re*.
- CBS hyp1 genes cluster near the O₂-tolerant hydrogenase and hyp2 genes near the H₂uptake hydrogenase.
- CBS hydrogenase and *hyp1* genes have similar induction profile, both are induced by CO (but not by H₂). The uptake hydrogenase and *hyp2* are both induced by H₂ (but not by CO) 2013 AMR presentation.

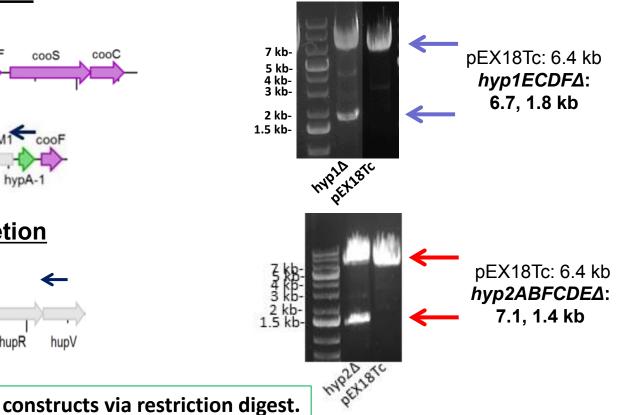
CBS Hyp Proteins	% Identity Hyp1 vs. Hyp2	Ralstonia eutropha	CBS Hyp1 (%)	CBS Hyp2 (%)
НурА	34.5	НурА	31.0	65.5
НурВ	53.6	НурВ	52.3	67.4
НурС	39.2	НурС	38.4	59.5
HypD	50.9	HypD	47.4	77.3
НурЕ	53.8	hypE	54.0	74.4
НурҒ	37.2	НурҒ	38.4	60.2

• CBS hydrogenase likely has related function with hyp1, but not hyp2.


Summary: Complete FY14 Q2 interim Milestone. The data suggest hyp1, but not hyp2, should be co-transformed with CBS hydrogenase into Synechocystis.

Task 1 – Technical Accomplishments

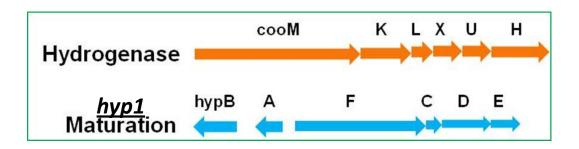
Generate hyp1 and hyp2 Deletion Mutants in CBS – On Going

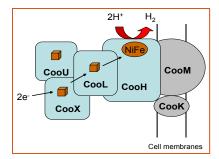

- We aim to delete either *hyp1FCDE* or *hyp2ABCDEF* which provides more direct evidence if they work in concert to assemble CBS hydrogenase (Q3 Milestone).
- Two deletion constructs were verified with mutant screening ongoing integrating a large DNA knockout region could be a challenge.

hyp1FCDE (4.87 kb) deletion

Summary: Verified two deletion constructs via restriction digest.

<u>Sphl Digest</u>



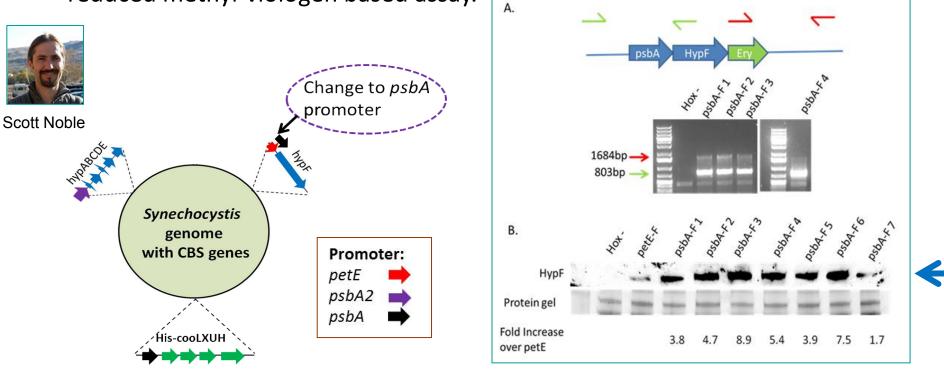

NATIONAL RENEWABLE ENERGY LABORATORY

Approach/Milestone

Task 2 – Expression of the CBS hydrogenase in *Synechocystis*

- Approach: Transfer the O₂-tolerant CBS hydrogenase and its maturation genes (*hyp1*) into a *Synechocystis* host with no background H₂ production.
 - Optimize hydrogenase activity via tuning the expression levels of hydrogenase and *hyp1* maturation genes.
 - Transform additional *hyp* genes if needed (*slyD, hyp2*).
 - Resolve the hydrogenase subunit composition (CooLXUH) in *Synechocystis*
 - Native CBS hydrogenase is a hexamer. We plan to transform only the four soluble subunits (CooLXUH) into *Synechocystis* as the subcomplex displayed *in vitro* hydrogenase activity in previous work.

Approach/Milestone


Task 2 – Expression of the CBS hydrogenase in *Synechocystis*

	FY13 Milestones – all regular	Completion Date	Status
3.23.2-1	Improve expression of CBS hydrogenase genes by two-fold via manipulating promoter strength (presented 2013 AMR)	7/13	Complete
3.23.2-2	Construct a <i>Synechocystis</i> recombinant with stronger promoters to drive the expression of 10 CBS genes (four hydrogenase structure genes and six maturation genes) and show at least two-fold improvement in the expression of either the CBS maturation protein <u>HypF</u> or the hydrogenase protein CooX in order to assemble a more active CBS hydrogenase in <i>Synechocystis</i>	9/13	Complete
	FY14 Milestones – all regular		
Q3	Verify that more than 30% of the CooLXUH proteins are present as a tetramer of each of the four proteins in a <i>Synechocystis</i> recombinant expressing 10 CBS hydrogenase and related maturation genes, using an affinity pull-down assay/protein Western blotting method.	6/14	On track
Q4	Double the CBS hydrogenase activity over the baseline rate of 10 nmol H ₂ /ml culture/h in whole cells of a <i>Synechocystis</i> recombinant, assayed in vitro with reduced methyl viologen.	9/14	On Track

Task 2 – Technical Accomplishments

psbA promoter Enhanced Maturation Protein Expression in Synechocystis

- Promoter tuning will increase hydrogenase activity in *Synechocystis*.
- Improved HypF protein expression by more than two-fold via replacing the *petE* promoter with the stronger *psbA* promoter.
- Yet the recombinant did not yield any *In vitro* hydrogenase activity using the reduced methyl-viologen based assay.

Summary: Complete FY13 Q4 Milestone. Confirmed stronger promoter indeed yields more CBS HypF protein in the *Synechocystis* recombinant, and the need to tune the other proteins.

Task 2 – Technical Accomplishments

Hydrogenase Subunit Composition in Recombinant Synechocystis

- FY14 Q3 Milestone aims to determine that 30% of the recombinant hydrogenase is a CooLXUH tetramer in *Synechocystis*, with the rationale that a tetramer will have higher hydrogenase activity.
- The hydrogenase subunit CooL has been modified with an affinity 6XHis tag, needed for pull-down assay for the above composition analysis, but the tag might interfere with hydrogenase activity in *Synechocystis*.
- A knock-in of 6XHis tag-cooL was integrated into the CBS genome successfully and the tag has no effect on in vivo hydrogenase activity in CBS.

cooH hupN

Carrie Eckert

1.11 kb fragment with 6XHisHRV3C- specific primer

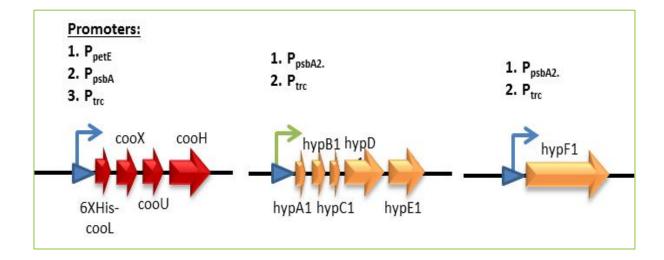
2 kb

-1 kb

Summary: His affinity tag has no effect on hydrogenase activity, and outcome meets toward FY14 Q3 Milestone.

WT

6XHiscooL


cooK cooX

6XHisHRV3C cooL cooU

Task 2 – Technical Accomplishments

Promoter Tuning to Optimize Hydrogenase Expression in Recombinant Synechocystis

- Quantitative protein immunoblots is ongoing to compare hydrogenase and Hyp proteins levels in native CBS and in recombinant Synechocystis – FY13 AMR Reviewer's suggestion
- Promoter reconstruction is underway, by using strong *psbA* and *trc* promoters of varying frequency to improve hydrogenase activity in the *Synechocystis* recombinant (Q4 Milestone).

Promoter Tuning Strategy

Carrie Eckert

Response to Reviewers' Comments

NiFe hydrogenase is a logical gene candidate....However, the rationale was not explained clearly, and it is unclear why the growth assay is a good proxy for HypE1 and E2 hydrogenase (Hyd) activities.

• **<u>Response</u>**: qRT-PCR data suggest that HypE1 is consistent with a role in CO metabolism (leading to H₂ production, but growth in CO depends on HypE2), and HypE2 with a role in H₂ uptake (leading to cell growth). We therefore tested the effects of gene deletions on growth in either CO or H₂ alone; which forms the rationale of using the growth assay as the proxy for their respective role.

 O_2 -tolerant Hyd: $CO + H_2O \xrightarrow{E1} H_2 + CO_2$

 H_2 -uptake Hyd: $H_2 + CO_2 \xrightarrow{E2}$ cell mass

Gene expression is one factor that can lead to low enzyme activity, but so can inefficiencies in protein folding. It is suggested that a near-term experimental objective should include comparing the heterologously expressed protein in Synechocystis with the native protein isolated from Rubrivivax (if it is possible to scale up)....

<u>Response</u>: We have planned in FY14 and beyond to compare the native and the recombinant version of the O₂-tolerant CBS hydrogenase as to activity, O₂ tolerance, protein aggregates, truncated proteins, and especially expression levels in both CBS and the *Synechocystis* recombinant, as a means of proper protein folding and expression tuning to identify the rate-limiting steps to guide further optimization.

There are parallel paths to improving oxygen tolerance and increasing hydrogen yield, but nothing has been integrated.

<u>Response</u>: The most critical parameter is to construct a cyanobacterial recombinant with O₂-tolerant hydrogenase activity, after which the other parameters (truncated antenna chlorophylls, competing pathways, and dissipation of proton gradient) will be integrated to build a model strain.

Collaborations

• Task 1. Probe hydrogenase maturation machinery in CBS

Drs. Jin Chen (Michigan State Univ.; Office of Science Funding) and Jonas Korlach (Pacific Biosciences; free service)

• Task 2. Expression of the CBS hydrogenase in *Synechocystis*

Dr. Phil Weyman, J. Craig Venter Institute

- JCVI has constructed a *Synechococcus* recombinant expressing an environmental hydrogenase. NREL will perform experiments to determine the linkage of the hydrogenase with *Synechocystis* ferredoxin, the latter reduced photosynthetically.
- The successful outcomes will validate that foreign hydrogenase could link to the host photosynthetic pathway in a cyanobacterium for lightdriven H₂ production. JCVI and NREL will publish together.

Remaining Challenges and Barriers

Probe Hydrogenase Maturation Machinery in CBS

- Identify the key maturation genes to correctly assemble the CBS hydrogenase
 - *slydD* is a valid candidate for heterologous expression.
 - *hyp1* and/or *hyp2* deletion will provide more direct evidence if *hyp1* is sufficient. Need to optimize *hyp1/hyp2* deletion when integrating a large knockout region (4.87 kb *hyp1* and 4.81 kb *hyp2*).

Expression of the CBS hydrogenase in Synechocystis

- Tuning expression levels of the CBS hydrogenase structural and maturation genes in *Synechocystis*
 - Test strong promoters and more frequent placement to drive transcription
- Demonstrate *in vitro* and *in vivo* H₂ production, the latter linking to the host photosynthetic pathway
 - CBS hydrogenase is able to link to photosynthetically reduced ferredoxin from a cyanobacterium, *in vitro*, as previously demonstrated.

Proposed Work

Task 1. Probe hydrogenase maturation machinery in CBS

- Continue to generate the *hyp1* ($\Delta hyp1FCDE$) or *hyp2* ($\Delta hyp2ABFCDE$) deletion mutants and characterize growth profiles (in CO or H₂) and hydrogenase activity to unravel their functions in assembling the CBS hydrogenase (FY14).
- The outcome will provide more direct evidence the role of *hyp2* genes in assembling an active CBS hydrogenase in *Synechocystis* (FY15).
- Express CBS *sly*D in the *Synechocystis* recombinant (FY15).

Task 2. Expression of the CBS hydrogenase in Synechocystis

- Continue to tune expression levels of the hydrogenase and Hyp1 proteins in native CBS and in the *Synechocystis* recombinant guided by promoter engineering, with stronger promoter and more frequent placement to improve hydrogenase activity (FY14)
- Perform affinity pull-down assay to determine activity and hydrogenase subunit composition in the above recombinant (FY14).
- Optimize growth conditions (light intensity, growth medium, stage of growth) and determine *in vitro* hydrogenase activity and O₂ tolerance (FY15).
- Link CBS hydrogenase to the host *Synechocystis* photosynthetic pathway for light-driven H₂ production (FY15).

Summary

Task 1. Probe hydrogenase maturation machinery in CBS

- Uncover *slyD* in CBS, but not in *Synechocystis*. *slyD* is a nickel insertion maturation gene, which may warrant its expression in *Synechocystis*.
- CBS *hyp2* is more similar to the *hyp* genes in *R. eutropha*, which assemble an uptake hydrogenase. We will therefore focus on expressing only *hyp1* in *Synechocystis* in FY14.
- Work is ongoing to generate CBS *hyp1* and *hyp2* mutants by screening colonies obtained from initial transformation.

Task 2. Expression of the CBS hydrogenase in Synechocystis

- Improved the expression of the CBS maturation protein HypF by up to nine-fold, when a strong *psbA* promoter was used in lieu of the weak *petE* promoter.
- Determined that affinity tagging of the CBS CooL hydrogenase subunit has no effect on hydrogenase activity. The tag is needed to resolve CBS hydrogenase subunit composition via a pull-down assay.
- Work is ongoing to tune and optimize CBS gene expression in Synechocystis via promoter engineering to obtain active hydrogenase activity and the hydrogenase subunit compositions.