

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Low-Noble-Metal-Content Catalysts/Electrodes for Hydrogen Production by Water Electrolysis

P. I. Name: Kathy Ayers Organization: Proton OnSite Date: June 18th, 2014

Project ID: PD098

Overview

Timeline

- Project Start: 28 June 2012
- Project End: 13 Aug 2015
- Percent complete: 45%

Budget

- Total Funding Spent*
 \$413,000
- Total Project Value
 \$1,150,000
- Cost Share Percentage
 - 0% (SBIR)

Barriers

G. Capital Cost

Table 3.1.4 Technical Targets: Distributed Forecourt Water Electrolysis Hydrogen Protoduction ^{a, b, c}							
Characteristics	Units	2011 Status	2015 Target	2020 Target			
Hydrogen Levelized Cost ^d (Production Only)	\$/kg	4.2 ^d	3.9 ^d	2.3 ^d			
Electrolyzer System Capital Cost	\$/kg \$/kW	0.70 430 ^{e, f}	0.50 300 ^f	0.50 300 ^f			
System Energy Efficiency ^g	%(LHV)	67	72	75			
	kWh/kg	50	46	44			
Stack Energy Efficiency ^h	% (LHV)	74	76	77			
2	kWh/kg	45	44	43			

2012 MYRDD Plan

Partners

Brookhaven National Lab

Relevance: Leveraging Fuel Cell Advancements in Electrolyzers

- Significant investment made in PEM fuel cells
- Electrolyzer platform can benefit with incremental investment
 - Similar chemistry but different operating requirements
 - Not always a drop in but shows promise need some adaptation
- Core-shell catalysts: developed by various groups including BNL/Adzic group
 - High activities and durability demonstrated
 - Even more benefit in reduction of electrolyzer loadings

Relevance: Renewable Fuels

- Hydrogen from electrolysis is the carbon-free solution
- Germany already at 20-40% stranded wind power
 - Changes economics for \$/kg production

Relevance: Hydrogen Energy Storage

- Flexibility of hydrogen enables additional options for lower cost across applications
 - Also impacts fueling through biogas applications

Relevance: System Scale-Up Needs

- System cost improves considerably with scale
- Reduction of PGM content needed to manage price volatility and high volume needs

Relevance: Capital Cost Reduction

- MEA is a large fraction of overall stack cost
- Current cost roughly equivalent between membrane, catalyst, and manufacturing/labor
- New manufacturing methods and ultra-low PGM loading will reduce capital costs significantly and enable scale

Insertion to MW Scale

- Stack platform already in verification stages
- Manufacturing processes must be scalable to required active area

Top Level Approach

- Task 1.0 Cathode Catalyst
 - Technology transfer
 - Scale-up
- Task 2.0 Cathode
 Manufacturing
 - Deposition verification
 - Manufacturing development
- Task 3.0 Anode Catalysts
 - Synthesis of Ru nanoparticles on TiO₂
 - Coating Ir metal/metal oxide on Ru cores
 - Evaluation of synthesized catalysts

- Task 4.0 Anode Electrode
 - Ink formulation for anode catalysts
 - Anode GDE fabrications
 - Structural and component characterization
- Task 5.0 Cell Development and Testing
 - Anode GDL development
 - Cathode GDE incorporation
 - Durability and post-operation assessment
- Task 6.0 Cost Analysis

Phase I Summary

Equivalent cathode performance at low loadings (<0.1 mg/cm²)

Brookhaven Cathode GDE vs. Proton Baseline MEA

snsity, mA/cm²

- Reduction on anode to $<0.5 \text{ mg/cm}^2$
- Manual application processes used in Phase 1

Approach: Phase II Project Objectives

- Translate catalyst synthesis to a manufacturable process at Proton.
- Develop technique for manufacturable electrodes.
- Demonstrate feasibility for 80% cost reduction in OER catalyst.
- Downselect promising anode electrode configurations to achieve >100 hrs durability.
- Achieve 500 hours of operation with cathode GDE.
- Evaluate the cost benefits of new materials.

Approach: Year 1 Project Milestones

Task #	Milestone Description	Due Date / Completion
6	Project Kick-off: Proton, BNL	8/30/2013 (100%)
1	Demonstrate successful cathode catalyst synthesis and electrode manufacture at Proton	12/31/2013 (100%)
3	Complete study of TiO _x -supported Ru@Ir catalysts in solution electrochemical cells.	12/31/2013 (100%)
4	Demonstrate uniform and robust catalyst layer on Ti GDLs	4/30/2014 (20%)
1	Complete scale up synthesis of cathode catalysts to 10 – 100 g batch level	6/30/2014 (20%)
5	Complete cell design analysis for cathode configuration	7/15/2014 (0%)

Cell design analysis shifting due to resource availability and priority of task

Approach: Year 2 Project Milestones

Task #	Milestone Description	Due Date / Completion
	Downselect optimal cathode material and process	8/30/2014
2	for reliable production	(20%)
	Demonstrate improved activity and durability of	
4,5	selected anode GDE samples in cell	8/30/2014
6	Provide initial cost assessment via H2A model	8/30/2014
2,4,5	Identify key issues for enhancing durability	11/30/2014
	Achieve >100 hours durability of developed anode	
4,5	catalyst/GDE	4/30/2015
	Demonstrate process capability for large active	
2,4,5	area electrodes	6/30/2015
		7/30/2015
2,4,5	Achieve 500 hours of operation at 89 cm ² cell level	(50%)
	Evaluate the benefits of selected anode catalysts/electrodes over the baseline in cost	
6	reduction or efficiency boost.	8/30/2015
6	Complete Final Reporting	8/30/2015

Approach: Low Catalyst Loading Concept

- Increase the Pt specific surface area by synthesizing sizedcontrolled, core-shell nanocatalysts
- Translates into a >98% reduction of Pt
- Strategy: translate and scale up process for manufacturing

Atomically coated structures process shown by TEM (right) using a simple process.

Approach: Manufacturing and GDL Selection

- Ultrasonic spray deposition identified as possible approach for high-throughput and low labor
- Phase 1: MPLs result in better distribution of catalyst near membrane
- Stable anode supports need to be identified
- Strategy:
 - optimize deposition technique and GDL selection
 - explore TiO₂ as initial anode support

Ultrasonic spray deposition¹ ¹SPIE Newsroom. DOI: 10.1117/2.1200903.1555

- Demonstrated successful cathode catalyst synthesis
 and electrode manufacture at Proton
- Completed study of TiO_x-supported Ru@Ir catalysts in solution electrochemical cells
- Downselect optimal cathode material and process for reliable production
 - Showed feasibility for ultrasonic spray deposition for cathode manufacturing
- Showed > 500 hrs durability with ultra-low loaded
 Proton-made cathode in production quality hardware

- Task 1.0 Cathode Catalyst Development
 - Installed safety-qualified equipment and procedures
 - Established quality metrics at critical process points: solution color, pH, and product weight

Color transformation of solution should proceed from dark brown to green

Safety-qualified hydrogen reducing furnace

- Task 1.0 Cathode Catalyst Development
 - Achieved equivalent cathode performance at 1/10 the loading using Proton-made catalyst and GDE

Task 2.0 Cathode Manufacturing Development

 Achieved nearly equivalent performance using a spray-deposited cathode (<0.15 mg/cm²)

- Task 3.0 Develop Anode Catalysts
 - BNL synthesized and characterized Ru-Ir "core-shell" nanocatalysts on TiO₂ supports
- Ru-Ir particles were 2.4 and 6.8 nm in diameter respectively before and after annealing, while TiO₂ particles are ~30 nm.
- Performances were similar to unsupported catalysts.
- Interaction with Ti GDL may be more important.

XRD measurements confirm nanocatalyst synthesis

 Made uniform and stable catalyst coating on Ti GDL and OER catalyst for anode

3D SEM image of a Ti GDL average roughness 20 μm

Photos and optical images of catalystcoated Ti GDLs with 3.4, 1.5, 0.8, and 0.3 mg cm⁻² IrOx

• Uniform change in catalysts' loading by ten-fold.

• Established IrOx baseline measured in solution electrochemical cell using standalone GDE strips.

iR-corrected polarization for IrOx on Ti measured after 20 min stabilization at 200 mA cm⁻² in 0.5 M H_2SO_4 solution.

Kinetic current at 1.6 V (right axis) and mass activity (left axis) as a function of IrOx loading.

- Task 5.0 Cell Development and Testing
 - Proton-made cathode shows durability for >500 hr

Future Work

- Task 1: Cathode Development
 - Scale up process to relevant production lot quantity
- Task 2: Cathode Manufacturing
 - Identify optimum spraying parameters and equipment
- Task 3: Develop Anode Catalysts
 - Improve the durability of Ru-Ir core-shell catalysts or leverage new approach being explored in parallel by BES-supported research project
- Task 4: Anode Electrode Fabrication
 - Explore and develop ways to enhance catalyst-Ti interaction
 - Study the impact of Ti GDLs on OER performance

Future Work

- Task 5: Cell Development and Testing
 - Identify optimum cathode GDL material to increase efficiency and maintain durability
 - Identify promising anode GDL materials and test performance/durability
- Task 6: Cost Analysis
 - Utilize H2A model and Proton's electrochemical interface model to refine the impact of design changes developed in Tasks 1-5 on the \$/kg of H₂

Collaborators

- Brookhaven National Lab
 - Synthesis and characterization of core shell catalyst materials
 - Development of electrode formulations and application methods on gas diffusion layers for low catalyst loading

Summary

- **Relevance:** Reduces stack capital cost for lower hydrogen production cost
- Approach:
 - Optimize anode catalyst utilization for >80% reduction in PGM loading
 - Identify optimum configuration for manufacturable, ultra-low loaded cathode

Technical Accomplishments:

- Achieved equivalent cathode performance at <1/10 loading
- Showed feasibility for ultrasonic spray deposition for cathode manufacturing
- TiO_x-supported Ru@Ir catalysts manufactured and characterized
- Showed > 500 hrs durability with ultra-low loaded Proton-made cathode

Collaborations:

- Brookhaven National Labs - catalyst and formulation development

• **Proposed Future Work:**

- Scale up cathode manufacturing
- Identify optimum ultrasonic spraying parameters and equipment
- Carry out MEA tests to identify key issues for anode catalyst durability
- Identify optimum anode and cathode GDL materials for final design
- Perform cost analysis

Acknowledgments

The Proton Team

- Everett Anderson
- Blake Carter
- Chris Capuano
- Luke Dalton
- Nem Danilovic
- Morgan George
- Judith Manco
- Mike Niedzwiecki
- Mike Parker
- Julie Renner
- Andy Roemer

Our Collaborators

- Jia Wang
- Yu Zhang

