

2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting

Cryogenically Flexible, Low Permeability H₂ 700 Bar Delivery Hose

P. I.: Dr. Jennifer Lalli, President Presenter: Mr. Keith Hill, PM, Mech. Engr. NanoSonic, Inc. 6/17/2014 Proje

Project ID # **PD101**

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date:
 6/10/2013
- Project End Date: 5/23/2014

Budget

- FY13 DOE Funding: \$150,000
- Planned FY14 DOE Funding: \$1,000,000
- Total DOE Project Value: \$1,150,000

Barriers

- Lack of H₂ / Carrier and Infrastructure Options
- Reliability and Costs of Gaseous H₂ Compression
- Reliability and Costs of Liquid H₂ Pumping

Partners

- CSA Group
- NREL
- Fittings Partner
- WEH USA
- Giles County Government

Relevance:

Develop a H₂ Hose Dispenser for Fuel Cell Vehicles

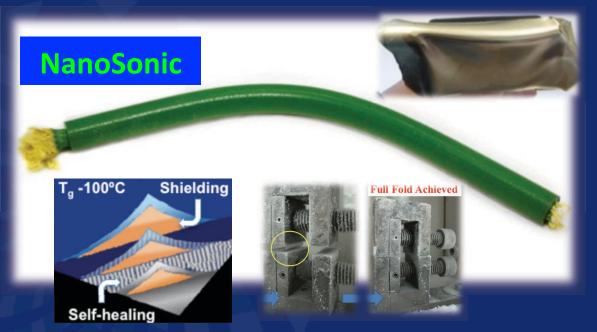
Flexhose Objectives:

<u>Develop:</u> a flexhose that dispenses H₂ for < \$4 gge <u>Verify</u>: flexhose reliability at -40 °C, under 860 bar H₂ for H70 fill, and Joule-Thompson cycle <u>Optimize</u>: cost, safety, and maintenance of flexhose for 70 fills / day (25,550 fills / year) <u>Qualify</u>: per ANSI/CSA HGV 4.2-2012 for class D hoses <u>Dispenser Compliance</u>: with SAE TIR J2601 and NIST Handbook 44

NanoSonic Approach:

<u>Combine</u>: NanoSonic's Thoraeus Rubber[™] technology with Advanced Low T_g Resins

<u>Produce</u>: an Anti-Static, Low H₂ Permeability Flexhose that can Store H₂ under Cryogenic Conditions, and Resist H₂ Embrittlement under High Pressures and Flexing During Use


Approach: Develop a H₂ Hose Dispenser for Fuel Cell Vehicles

<u>Combine</u>: NanoSonic's Thoraeus Rubber™ technology with Advanced Low T_g Resins

<u>Produce:</u> an Anti-Static, Low H₂ Permeability Flexhose that can Store H₂ under Cryogenic Conditions, and Resist H₂ Embrittlement under High Pressures and Flexing During Use

GO / NO GOs

Low Temperature Flexibility for -40 °C Dispensing Requirement
 Fiber Reinforced to Prevent H₂ Induced Cracking (HIC) and Meet High Pressure (875 Bar)
 Cycling Requirements (25,550 annually) and Compete with Spir Star



Metal Rubber™ Flexible ESD Protective Materials

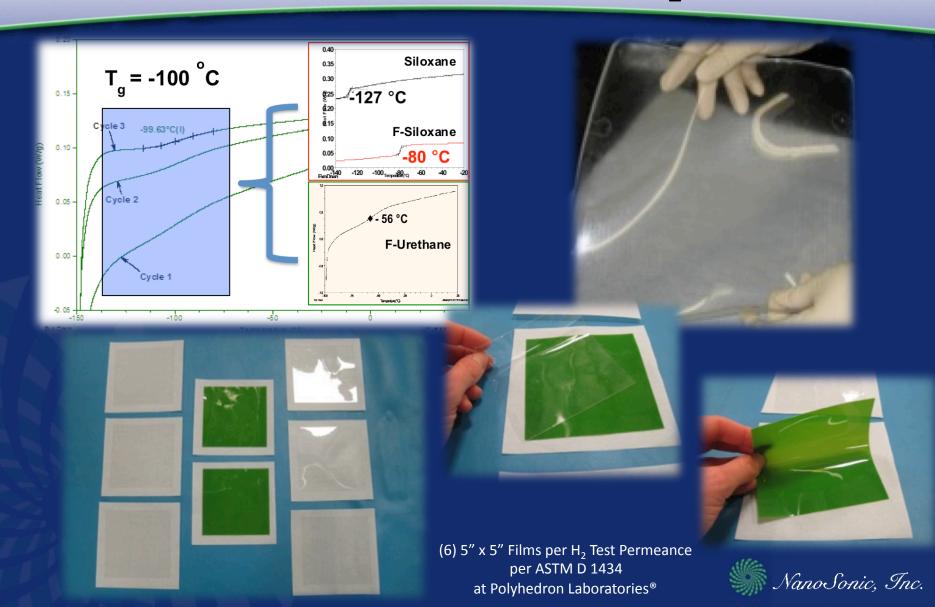
- Electrostatic Dissipation
- EMI/Radiation Shielding
- Lightweight/Flexible
- Textile Reinforcement
- Shielding for Hose Grounding Applications

Lightweight EMI and Radiation Shielding Material with Improved Quality & Reproducibility

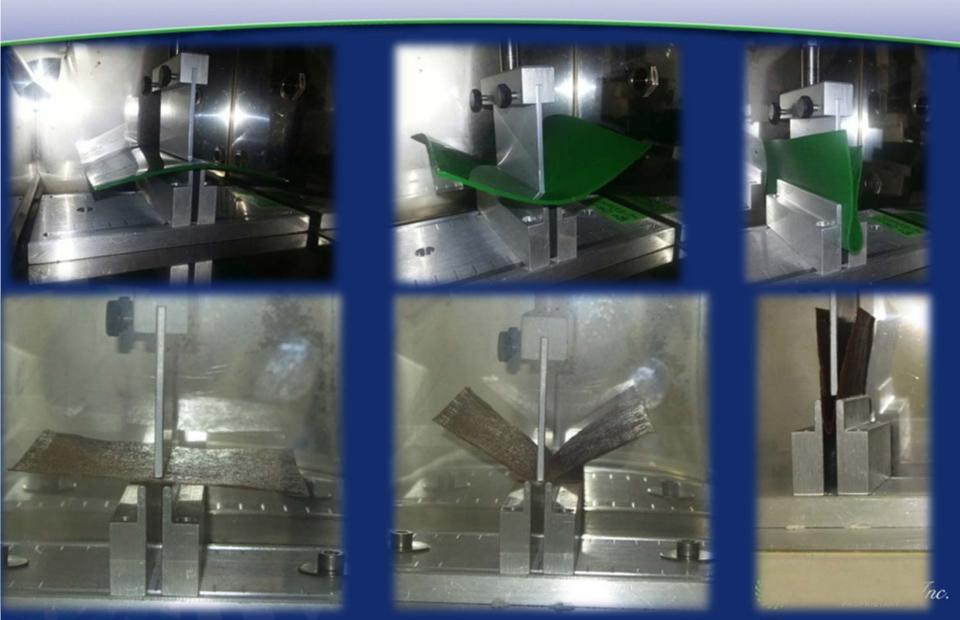
Highly uniform, high transmission loss over every 2" square cut from 12" x 12" composites

ID	Metal	Weight (g)	Width (cm)	Length (cm)	Thickness (cm)	plies	Mass Density (g/cc)	Transmission Loss (dB)
MH-202-35A	Au	0.9	5.08	5.08	0.045	2	0.79	-63
MH-177-182	Au	1.23	5.08	5.08	0.070	4	0.68	-101
MH-202-35B	Au	1.54	5.08	5.08	0.113	6	0.53	-101
MH-202-21A	Au	0.71	5.08	5.08	0.037	2	0.75	-50
MH-202-21B	Au	0.88	5.08	5.08	0.061	4	0.56	-76
MH-202-21C	Au	1.32	5.08	5.08	0.088	6	0.58	-106
MH-202-26A	Ag	0.80	5.08	5.08	0.048	2	0.65	-71
MH-202-26B	Ag	1.53	5.08	5.08	0.086	4	0.69	-97
MH-202-26C	Ag	1.96	5.08	5.08	0.126	6	0.60	-102
MH-202-30A	Ag	0.62	5.08	5.08	0.038	2	0.63	-73
MH-202-30B	Ag	0.89	5.08	5.08	0.072	4	0.48	-100
MH-202-30C	Ag	1.31	5.08	5.08	0.103	6	0.49	-100

Multiple Formats for Widespread Hose and Conduit Products



Noble Metal Au Nanoparticles 50' x 12" Scale-up For Cost Reduction


Filled Rigid & Flex Grounding Hoses High Pressure Flexible H₂ Delivery Hose

Low T_g Polymer Matrix Resins and Films for Cryogenic Flex Testing Followed by H₂ Permeance

NanoSonic Triple Cold Flex Test for H₂ Permeance Specimens at -50 °C on Hose Materials: Shown Flat, Mid-Way, and at 180 ° Fold

Accomplishments in Measurements

Air and H₂ Permeance Pre- and Post -50 °C Triple Fold Flex Test

A study by Savannah River National Laboratory concluded there was no mechanism for degradation and/or embrittlement of several polymers by hydrogen gas alone

0.29

0.22

0.20

 $AV = 0.31 \pm 0.09$

Air Permeance by ASTM D 1434

Sample No.	<u>Thickness (in)</u>	Air Permeance (cc/ 100in ² Atm day)				
Set 4 - Lot # LB199-119						
AIR - 10A, 10B, 10C	0.01110	0.11 0.00 0.01 AV = 0.04 ± 0.06				
AIR COLD - 10A, 10B, 10C	0.01110	$0.12 \\ 0.09 \\ 0.11 \\ AV = 0.11 \pm 0.01$				
Hydrogen Permeance by ASTM D 1434						
<u>Sample No.</u> Set 4 - Lot # LB199-119	<u>Thickness (in)</u>	Hydrogen Permeance (cc/ 100in ² Atm day)				

and fractures upon exposure to H₂

High-strength SS becomes brittle

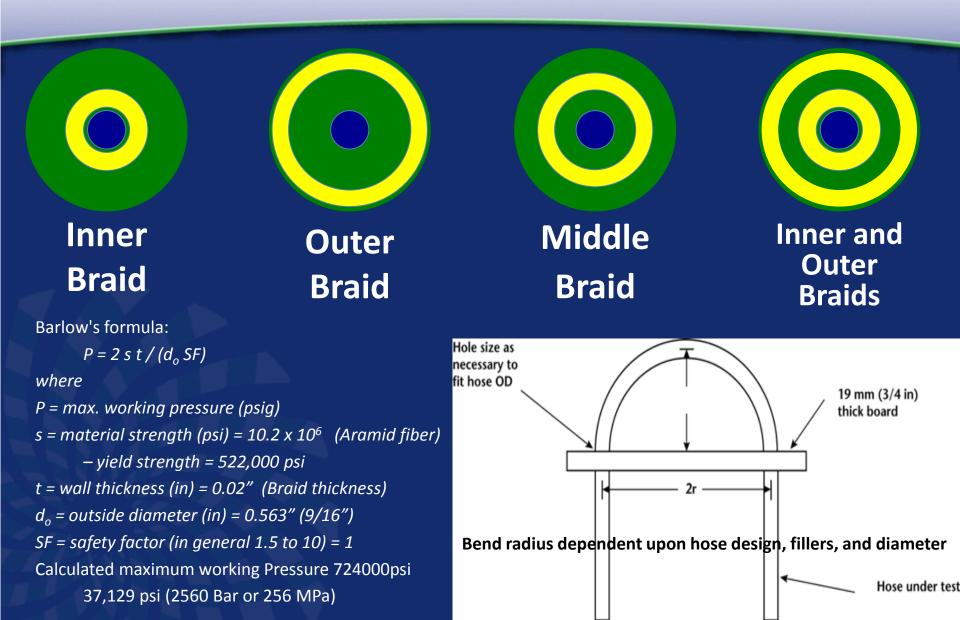
Lone hydrogen atoms diffuse through the metal, recombine in the matrix voids to form H₂, and create a pressure increase that leads to reduced ductility and tensile strength causing the metal to crack

Ferrosilicates are used to treat metals. NanoSonic uses a polymer fiber reinforced (rather than SS) low H₂ permeance HybridSil polymer matrix resin as the hose

Tests: ASTM F1459-06 and G142-98

	$AV = 0.24 \pm 0.04$
0.01100	0.36
	0.35
	0.20

0.01060


Hydrogen - 10A, 10B, 10C

Hydrogen Cold -

10A, 10B, 10C

Accomplishments in Design

Ideal Burst Pressure of Composite H₂ Hose Based on Fiber Braid Alone

Accomplishments in Production

Fiber Reinforced Hoses for In-House and 3rd Party Testing

Future Work Inflation Testing in-House and at CSA

Hydrostatic Strength (section 2.4) of ANSI/CSA HGV 4.2-2013

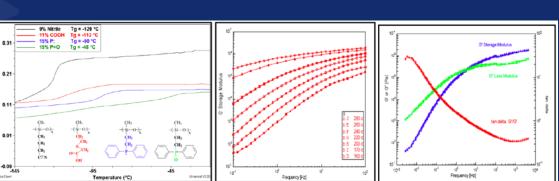
Standard for hoses for compressed hydrogen fuel stations, dispensers and vehicle fuel systems Requires a 1 min hold without burst or visible loss of fluid at a hydrostatic pressure of four (4) times the manufacturers specified maximum allowable working pressure (MAWP). Up to a 10,000 PSI MAWP hose assembly. Two (2) production assembly samples of each model at 12inches length are required.

Pressure Cycle Test (section 2.17) of ANSI/CSA HGV 4.2-2013

Standard for hoses for compressed hydrogen fuel stations, dispensers and vehicle fuel systems Requires 50,000 cycles with maximum allowable working pressure (assuming 10,000 PSI) at - 40°C and 50,000 cycles with maximum allowable working pressure (assuming 10,000 PSI) at 85°C followed by compliance testing to Leakage (section 2.2a) and Electrical Conductivity (section 2.5). Two (2) production assembly samples of each model hose length of " π (minimum bend radius) + 2(hose O.D.)" are required.

Remaining Challenges and Barriers Lifetime Prediction Testing via DMA Q800

Dual & Single Cantilever



Viscoelastic properties measured dynamically over:

- Wide temperature (T) range
- Modest frequency (t) range

Modulus data is shifted to make master curves using:

- Arrhenius Equation
- Williams, Landel, Ferry (WLF) Equation


Film & Fiber Tension

Mechanical and Environmental Testing & Fire Resistant Composites

Insulating Arrays prevent flame spread

Extrude Flexhose at NanoSonic and with Partners

Collaborations and Cost Sharing

- CSA Group Integrations Test Partner
- NREL Qualification Test Partner
- Swagelok Industrial Fittings Partner
- WEH USA Integrator and Producer of Breakaway and H₂ Fueling Dispensers
- H₂ Stations in CA (60 current, visited several)
- Giles County Government Manufacturing Facility Support

Funding Type

 Lockheed Martin – Dual-use Commercialization Needs for High Pressure Conduits

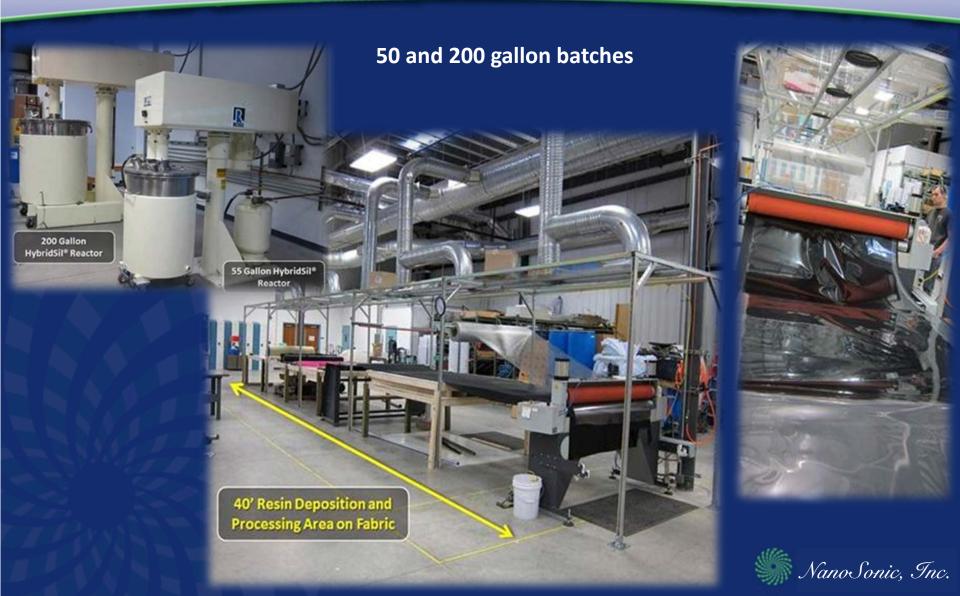
Source

Covers

NanoSonic, Inc.

i unung iype	Oddice	- JAG	Amount	Tears	004015
Phase I SBIR	DOE	Cash	\$100,000	2013	R & D, Prototype Design & Production
Phase II SBIR	DOE	Cash	\$1,000,000	2014-2016	Product Engineering, Qualification
Phase III IDIQ	DOE & H2 Fueling Stations	Cash	\$1,500,000	2017-2020	Purchase Order and Installation
Company Contribution	NanoSonic	Cash	\$600,000	\$200k annual	Commercialization and Marketing
Alliance Agreement	Lockheed Martin				
Partner Contribution	Hose Parts Partners				
County Contribution	Giles County	In-kind	\$1,100,000	2010-2016	Manufacturing and Shipping
County Infrastructure	Giles County	In-kind	\$7,500,000	2010	Infrastructure

Amount


Years

Type

Project Summary

- Relevance: Need for durable and cost effective H₂ delivery hose that resists H₂ embrittlement, survives 25,550 fills for H70 service, cycled at pressures > than 875 bar over a range of -50 °C to 90 °C. A single competing hose exists on the market, though it does not meet the service requirements or allow for a cost of \$2-4 gallon of gas equivalent.
- Approach: NanoSonic is developing a new class D hydrogen dispensing hose, for use on station side applications, systematically and chemically engineered to survive 51,240 fills (70 fills/day, 2 years). This state-of-the-art hose is based on a unique fiber reinforced, high performance, cryogenically flexible polymer to resist hydrogen embrittlement, survive the Joule-Thompson effect thermal cycles, perform consistently at pressures greater than 875-bar (H70 service, 700-bar and safety overpressure), and endure mechanical wear and fatigue at the pump.
- Technical Accomplishments: Developed a superior class of low T_g polymers that survived the harsh, triple fold cold flexure test. Down-selected materials for hose construction, which exhibited an ultra-low hydrogen permeance after severe 180° bending, three times in a -50°C chamber. This non-electrically conductive polymer was reinforced with an engineered fiber design and formed into hoses with a predicted burst pressure of 2560-bar, and an innovative path to dissipate static electricity.
- Proposed Future Research: During Phase II, a series of advanced, fiber reinforced, low temperature flexible and low hydrogen permeable hoses shall be evaluated per ANSI/CSA HGV 4.2-2013 for class D hoses to verify the safety, compatibility for hydrogen service, and weatherability. A hose shall be down-selected, transitioned from a Technology Readiness Level of 5–8, and presented to hydrogen hose partners (California dispensing stations and fittings/breakaway/fueling nozzle manufacturers) with a detailed integration design plan and cost analysis. The fully integrated hydrogen dispensing hose system, rated for H70 service, shall be demonstrated as compliant with SAE TIR J2601 and NIST Handbook 44, as a durable and competitive alternative to gasoline.

Scale-up of High Performance Polymer Resins, Composites and Hoses

Questions and Acknowledgements

This material is based upon work supported by the Department of Energy under Award No. DE-SC0010162

Contact: Jennifer Lalli or Keith Hill at (540) 626-6266 jhlalli@nanosonic.com

DOE-EERE DOE Fuel Cell Technologies Office: Grace Ordaz, Sunita Satyapal, Charles James, and Erika Sutherland (TPOC)

Phase II Integrators and Testing Facilities

Outline

I. NanoSonic Background *i.* Our Company

ii. DOE Program

II. H₂ Hose Production

- *i.* Overview
- ii. Relevance
- *iii.* Approach Materials Development
- iv. Accomplishments Materials Testing and Hose Production
- v. Future Work Test Plan
- vi. Collaborators

III. Summary

Our Company

Metal RubberTM and HybridSil® Multifunctional Durable Materials

- Polymer and Small Molecule Synthesis
- Pilot-Scale Manufacturing
- Protective Coatings
- Sheet Stock Production
- Advanced Textiles
- Appliques
- **RF** Testing

Sustainability

LEED Green Building
Green Engineering
Non-Toxic Products
Community

Cost Effective H₂ **Delivery** NanoSonic's Contribution: Flexible, Durable, Safe, H₂ Hose **DOE TOPIC 6 – HYDROGEN DISPENSER TECHNOLOGIES** Subtopic a – Dispenser Hose Assemblies INREL Zof com Fuel Cell Electric Vehicle

Goal for 2020: Develop a hose that enables H_2 delivery at < \$4 per gallon of gas equivalent (gge) to promote fuel cell vehicles as an affordable alternative

