2014 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting

Hydrogen Generation for Refineries

DOE Phase II SBIR

Dr. Girish Srinivas P.I.

gsrinivas@tda.com

303-940-2321

Dr. Steven Gebhard, P.E.
Dr. Robert Copeland
Mr. Jeff Martin

TDA Research Inc.
June 2014

Project: PD104

Project Overview

Timeline

Project start date: 8/14/09

Project end date: 8/14/14

Percent complete: 90

P.I.: Dr. Girish Srinivas

Budget

DOE share: \$850,000

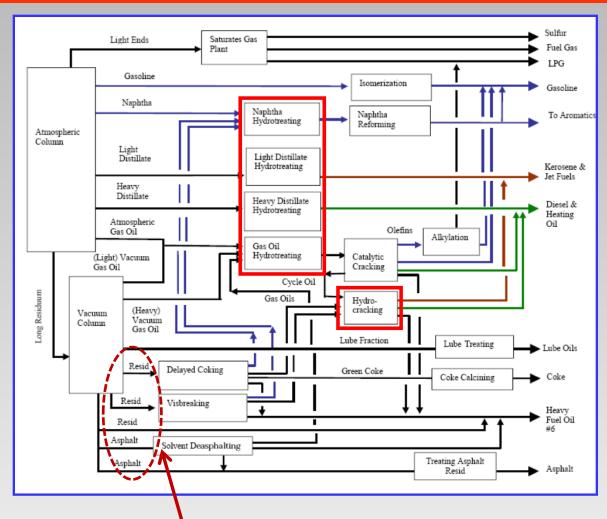
- Cost Share: ~\$450,000 (ongoing management time for commercialization efforts)
- Funding received in FY13: \$0
- Total funding planned for FY14: \$0
- Spent as of 3/31/14
 - \$656,145 (Ph II)
 - \$100,000 (Ph I)
 - \$756,145 (total)

Barriers


- Demonstration of continuous operation with circulating fluidized bed reactor system
- Engineering scale up
- Pilot scale demonstration

Partners

Matheson Tri-Gas



Hydrogen from Heavy, Renewable and Waste Oils – TDA *HyRes* Process

Relevance: Processing Heavy Crudes

- Refineries are processing increasingly sour, heavy crudes
- Catalytic reforming of paraffins to aromatics and hydrogen cannot supply enough H₂ for hydrotreating
- Typical 100,000
 bbl/day hydrocracking refinery will be short 23 <u>million</u> ft³/day of H₂

TDA HyRes process can generate additional H₂ from residuum

H₂ Required for Heavy Crudes

Residuum type	°API	Sulfur (wt%)	Carbon residue, Conradson (wt%)	Nitrogen (wt%)	Hydrogen (scf/bbl)
Venezuela, atmospheric	15.3-17.2	2.1-2.2	9.9-10.4		425-730
Venezuela, vacuum	4.5-7.5	2.9 - 3.2	20.5-21.4		825-950
Boscan (whole crude)	10.4	5.6		0.52	1100
Tia Juana, vacuum	7.8	2.5	21.4	0.52	490-770
Bachaquero, vacuum	5.8	3.7	23.1	0.56	1080-1260
West Texas, atmospheric	17.7-17.9	2.2 - 2.5	8.4		520-670
West Texas, vacuum	10.0-13.8	2.3 - 3.2	12.2-14.8		675-1200
Khafji, atmospheric	15.1-15.7	4.0 - 4.1	11.0-12.2		725-800
Khafji, vacuum	5.0	5.4	21.0		1000-1100
Arabian light, vacuum	8.5	3.8			435-1180
Kuwait, atmospheric	15.7-17.2	3.7-4.0	8.6-9.5	0.20 - 0.23	470-815
Kuwait, vacuum	5.5 - 8.0	5.1-5.5	16.0		290-1200

- Processing heavy crudes requires large quantities of hydrogen
- The lower the API gravity, the heavier the crude
- Heavy crudes contains high sulfur and high molecular weight hydrocarbons

Example: H₂ Shortage

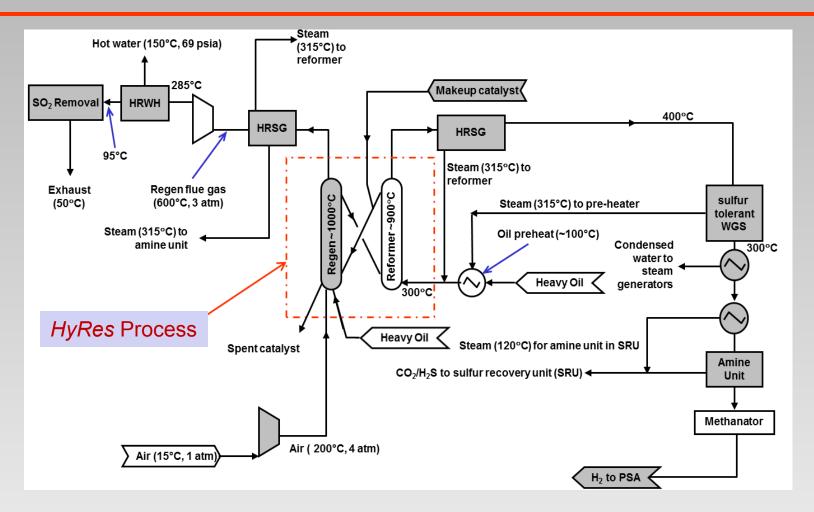
(Basis: 100,000 bbl/day crude feed)

Process Unit	Throughput	Hydrogen Usage
	1000 Barrels	Million Standard
	per Day	Cubic Feet per Day
	(MBPD)	(MMSCFD)
Atmospheric Crude Distillation	100	0
Vacuum Distillation	40	0
Light Ends; Gasoline Isomerization	10	0
Naphtha Hydrotreater (Atmospheric and Delayed Coker naphtha)	20	2 (consumed)
Catalytic Reforming	22	22 (supplied)
Light Distillate to Hydrotreating for Kerosene/Jet Fuel)	10	2 (consumed)
Heavy Distillate & Cycle Oil to Hydrotreating for Diesel/Heating Oil	10	3 (consumed)
Atmospheric Gas Oil to Gas Oil Hydrotreating	10	5 (consumed)
Light Vacuum Gas Oil to Gas Oil Hydrotreating	12	6 (consumed)
Heavy Vacuum Gas Oil to Gas Oil Hydrotreating	13	7 (consumed)
Delayed Coker Gas Oil to Gas Oil Hydrotreating	7	4 (consumed)
Cycle Oil to Hydrocracking	8	16 (consumed)
Catalytic Cracking	31	0
Resid to Delayed Coking	15	0
Resid to Resid Hydroprocessing	0	0
Additional Hydrogen Supplied	H ₂ shortage	23 (supplied)

Source: AIChE petroleum refining CD

- A 100,000 bbl/day refinery that has hydrocracking is typically <u>short</u> about 23 million standard ft³/day of H₂
- TDA process can be used to generate the extra hydrogen from bottom of the barrel vacuum residuum

Hydrogen Prices

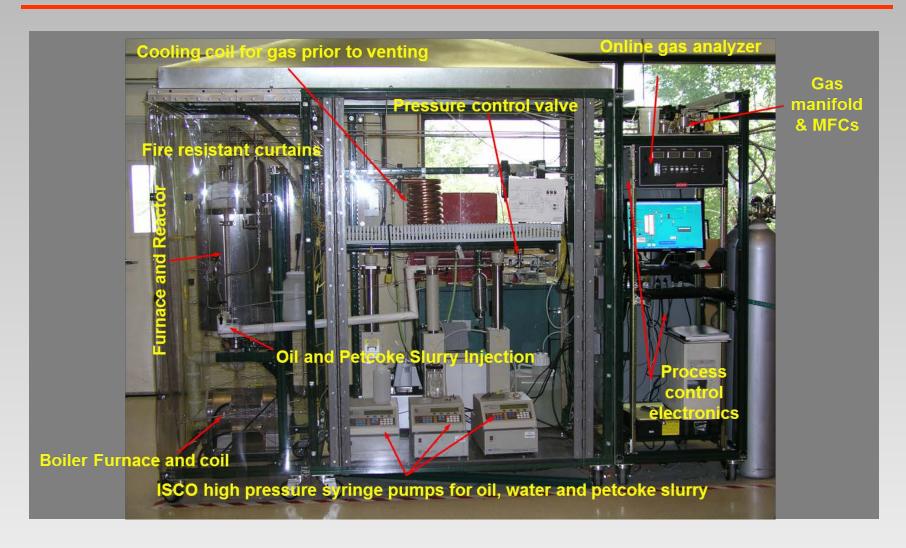

		Typical 1998	Typical 1998	2013 Price LOW	2013 Price HIGH	
		Typical volume	Price LOW	Price HIGH	(\$/1000 SCF) 3%	(\$/1000 SCF) 3%
		(MMSCFD)	(\$/1000 SCF)	(\$/1000 SCF)	inflation	inflation
Pipeline		2 to 50	\$1.25	\$2.25	\$1.95	\$3.51
Large on-s	ite SMR	10 to 100	\$1.50	\$2.75	\$2.34	\$4.28
Small on-s	ite SMR	0.5 to 10	\$3.00	\$6.00	\$4.67	\$9.35
Delivered l	_iq H2	0.01 to 1	\$6.00	\$18.00	\$9.35	\$28.04
Delivered (gas H2	0.001 to 0.1	\$12.00	\$15.00	\$18.70	\$23.37

Target market

- TDA's process for residuum steam reforming to generate hydrogen a.k.a. HyRes
 - Cost of hydrogen approximately \$4/1000 SCF
 - Lower capital cost than small steam methane reforming plant
 - Suitable for smaller refineries (~50,000 bbl/day)
 - Less expensive alternative for expanding H₂ capacity

Approach: Generating H₂ from Resid

- Diagram shows a complete, <u>stand alone</u> hydrogen plant
- Unit operations already in the refinery can be used



Catalyst

- Catalyst is cycled between reforming and regeneration with air
- Same charge of catalyst used been tested in the laboratory over the course of 2.5 years with NO deactivation
- Feeds processed include:
 - Atmospheric residuum (aka: atmospheric tower bottoms (ATB), long residuum)
 - Vacuum residuum (aka: vacuum tower bottoms (VTB), vacuum resid)
 - Dilbit (tar sand bitumen diluted with 30% condensate)
 - Biomass fast pyrolysis oil (whole raw oil)
 - Norpar 12 (C₁₁/C₁₂ paraffinic solvent used as naphtha simulant)

Laboratory Scale Test Apparatus

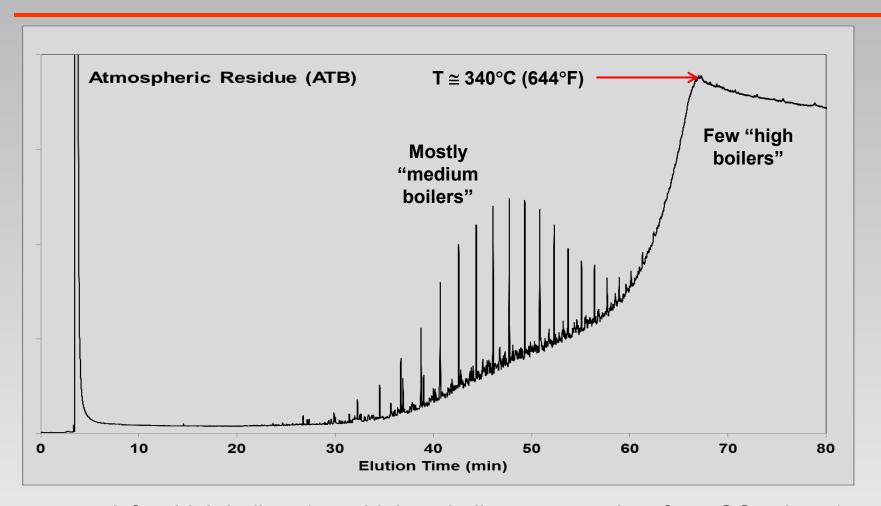
Accomplishments

- Steam reforming of atmospheric tower bottoms (ATB)
 - ATB is the stream from atmospheric distillation of crude oil that boils at T > 650°F
 - ATB is normally sent to vacuum distillation (or sometimes the fluid catalytic cracker)
 - No catalyst deactivation
- Steam reforming of vacuum tower bottoms (VTB)
 - VTB is the stream from vacuum distillation of ATB that would boil at T > 1050°F at atmospheric pressure
 - 1050°F is an extrapolated boiling point because in reality VTB would pyrolyzes before boiling at atmospheric pressure)
 - No catalyst deactivation
- Same catalyst sample used in all the tests for more than 2.5 years

Characteristics of ATB

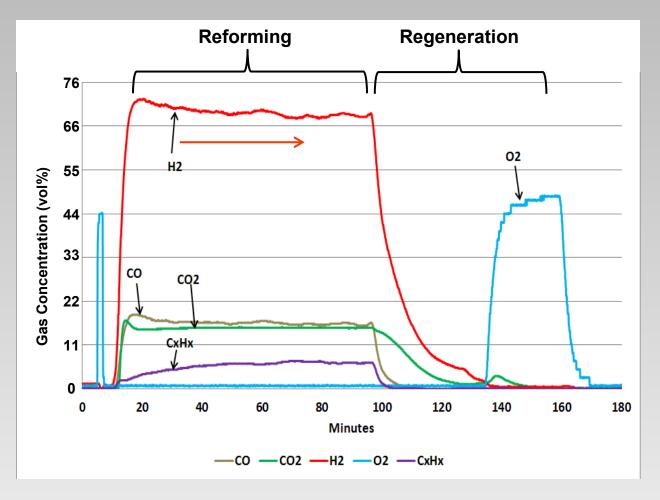
$H:C \cong 1.68$

Huffmann elemental analysis 1.68					H/C
		Basis: 1			
		#1	#2	Average	moles
Carbon	wt%	86.58	86.69	86.64	7.22
Hydrogen	wt%	12.04	12.25	12.15	12.15
Nitrogen	wt%	0.11	0.13	0.12	0.01
Oxygen	wt%	0.58	0.52	0.55	0.03
Sulfur	wt%	0.80	0.81	0.81	0.03


- Elemental analysis primarily done to determine sulfur content of the feed
- Chemistry of ATB, VTB etc. is more important than H:C content and is reflected in API gravity and boiling point, however...
- Only the H:C ratio affects HyRes (and only slightly)

Room Temperature Viscosity

GC Analysis of ATB

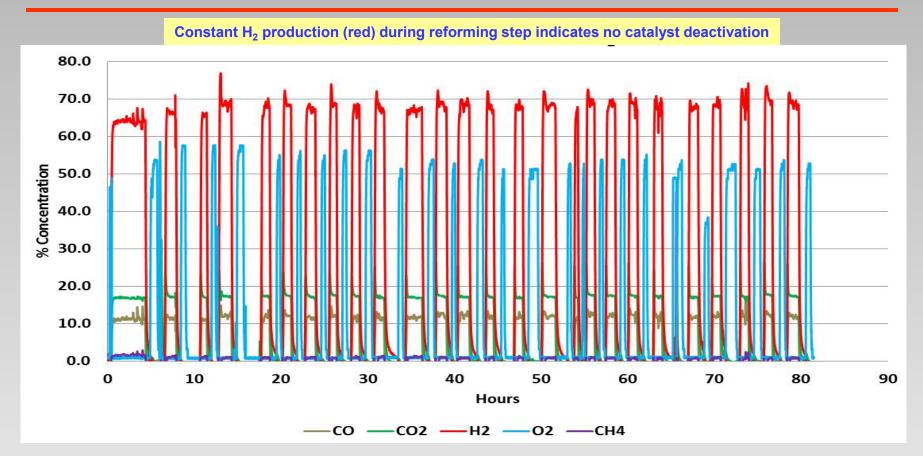


A few high boilers (very highest boilers cannot elute from GC column)
ATB is liquid at room temperature

Single Cycle Shown for ATB

Steam/Carbon = 3

- ATB reforming
- Steam/carbon = 3
- Syngas generated during reforming
 - 70% H₂
 - 20% CO
- Syngas composition agrees with thermodynamic equilibrium predictions (dry basis)
- Purge with N₂*
- Regenerate with air (stop when O₂ levels off)
- Purge with N₂*
- Start another reforming cycle



*N₂ purges used for fire prevention because experiments are done in a single reactor vessel

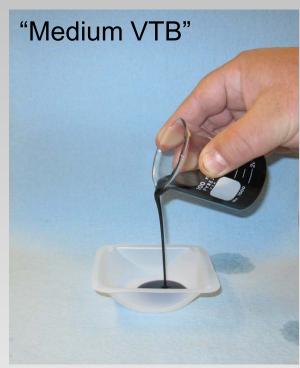
14

Multiple Reforming Cycles: ATB

Steam/Carbon = 5

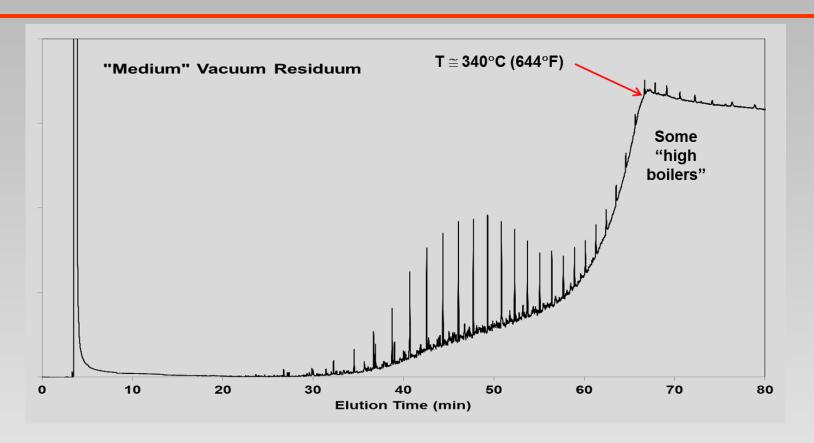
- Hydrogen ~70 vol%
- No catalyst deactivation in 83 hours (26 cycles)

Vacuum Tower Bottoms (VTB)


- Two sources of VTB were tested
 - Liquid at 50°C "medium"
 - Not liquid until T = 150°C "extra heavy"

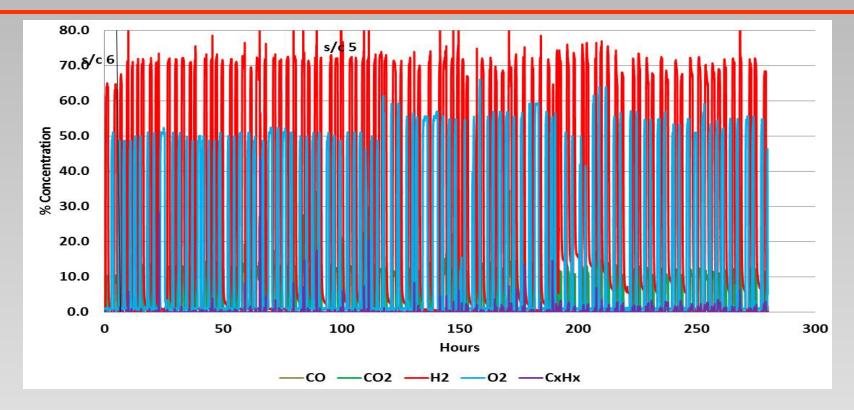
H:C ≅ 1.71

Huffmann elemental analysis 1.71 C/H ratio						
		Basis: 100 grams Oil				
		#1	#1 #2 Average			
Carbon	wt%	86.99	87.18	87.09	7.26	
Hydrogen	wt%	12.37	12.46	12.42	12.42	
Nitrogen	wt%	0.21	0.20	0.21	0.01	
Oxygen	wt%	0.30	0.26	0.28	0.02	
Sulfur	wt%	0.27	0.27	0.27	0.01	


 Elemental analysis primarily done to determine sulfur content

Viscosity at 50°C (solid at room temp)

GC Analysis of "Medium VTB"



- Some "high boilers"
- Solid at room temperature
- Heat to 50°F to feed to lab-scale reactor as a liquid

Reforming Cycles: "Medium VTB"

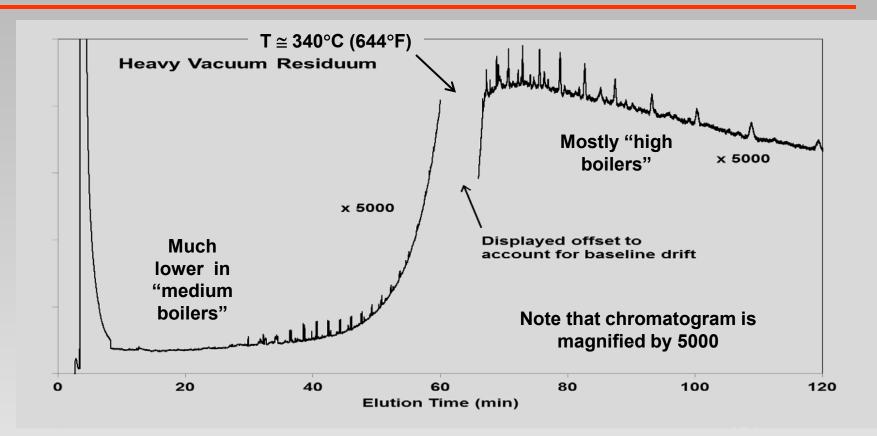
Steam/Carbon = 5

- "Medium VTB" reforming at T = 865°C (1589°F) & P = 50 psig
- Steam/carbon = 5
- Hydrogen ~70 vol%
- H₂ production rate (red) is <u>constant during each reforming step</u> <u>indicating there is no catalyst deactivation</u> in 280 hours (96 cycles)

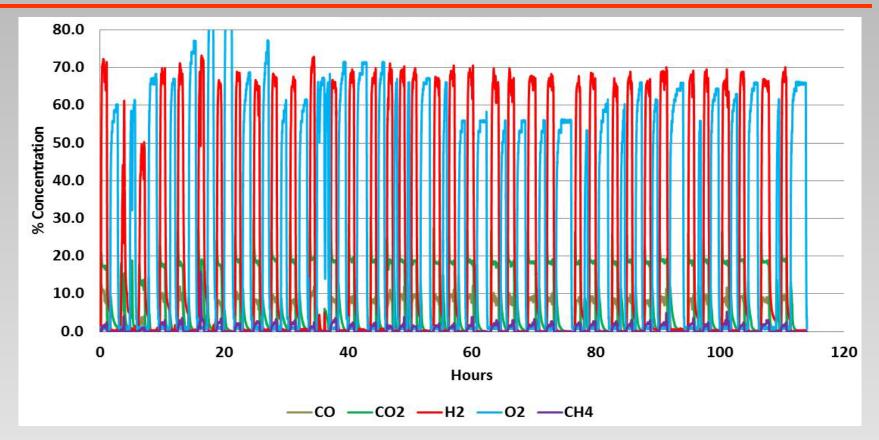
"Extra Heavy" Vacuum Residuum (VTB)

$H:C \cong 1.53$

Huffman Elementa	1.53	H/C	
	#1	#2	moles
Carbon (wt%)	85.99	86.09	7.17
Hydrogen (wt%)	10.89	10.98	10.94
Nitrogen (wt%)	0.42	0.43	0.03
Oxygen (wt%)	0.49	0.52	0.03
Sulfur (wt%)	2.02	2.02	0.06


- Slightly lower H:C than ATB
- Elemental analysis primarily done to determine sulfur content
- 2.5X as much sulfur as ATB
- Had to cut with 20 wt% xylene because we cannot operate our pump at 150°C which would be needed to reduce viscosity enough to feed whole oil to test reactor

20% xylene added to make fluid; heated to 50°C to feed to reactor


GC Analysis of "Extra Heavy VTB"

- Largely "high boilers" (however, most of sample cannot elute from column)
- Solid at room temperature
- Had to cut with 20% xylene to be able to feed to the reactor (cannot maintain 150°C in the heat high pressure feed pump)

Reforming Cycles: "Extra Heavy VTB"

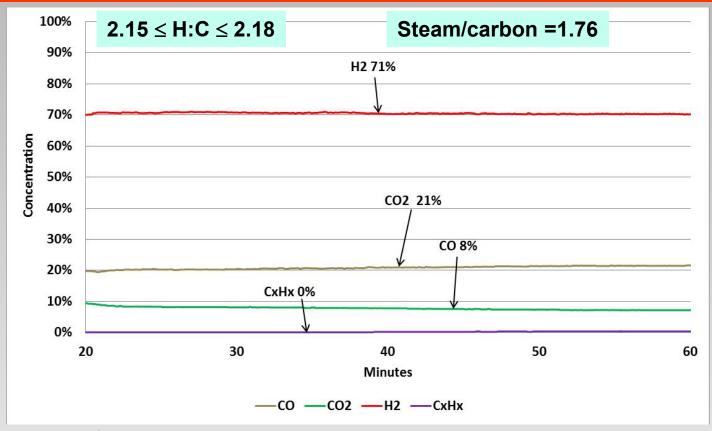
Steam/Carbon = 5

- Hydrogen ~70 vol%
- H₂ production rate (red) is constant during each reforming step indicating there is no catalyst deactivation in 115 hours (37 cycles)

Feedstock Flexibility: Norpar 12

Norpar 12

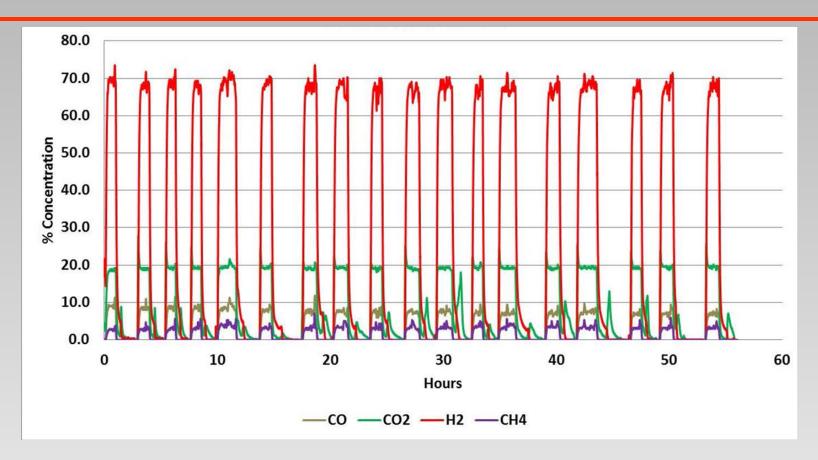
- ExxonMobil product
- ~1:1 C₁₁ and C₁₂ alkanes (paraffins)
- Demonstrates using TDA's HyRes process to generate hydrogen from middle distillates
- Very easy feedstock for hydrogen generation using HyRes


Colorless, low viscosity liquid at RT

H₂ Generation from Norpar 12

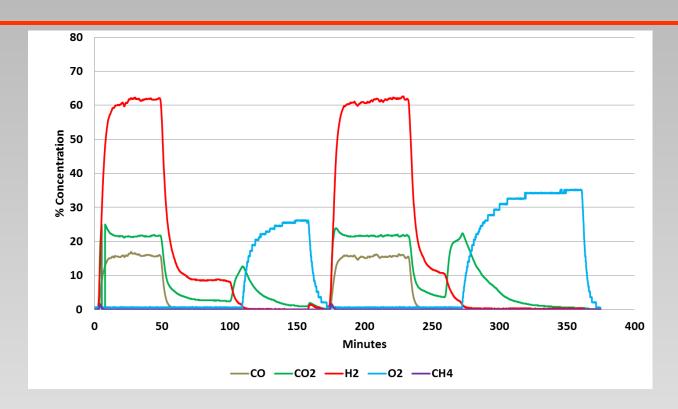
(simulates steam naphtha reforming)

- Very easy feedstock to process
- 71% H₂ agrees with thermodynamic equilibrium prediction (dry basis)
- Operates at very low steam to carbon ratios (S/C < 2)


Lower CAPEX alternative to conventional fixed bed steam naphtha reforming (e.g. in Europe)

Hydrogen Generation from Bitumen

- DILBIT (bitumen diluted with 30% condensate)
 - Liquid at room temperature
 - Tested in TDA's HyRes process
 - Performance essentially identical to that obtained with refinery residuum ATB and VTB (i.e. 70 vol% H₂ in raw syngas and no catalyst deactivation)
- Sales oil (diluted with 15% condensate)
 - Currently testing, expect good performance
- Emulsion
 - Cannot test directly with apparatus in current configuration (two phase mixture of tar in water)
 - Might not be possible to test raw bitumen (after water removal) in the lab because of feed heating limitations


DILBIT Test Results

- Approx. 70 vol% H₂ in syngas
- No catalyst deactivation
- Results essentially <u>identical</u> with those obtained when testing the refinery feedstocks (ATB, medium and heavy VTB

Biomass Fast Pyrolysis Oil

- Two cycles shown to see details
- Slightly lower H₂ in syngas than obtained with hydrocarbon feeds because biooil contains oxygen, which is rejected as water
- Steam to carbon = 2 (low S/C reduces energy required to raise steam)
- No catalyst deactivation in subsequent cycling
- Whole raw oil can used without any prior processing (except filtering)

Team Members and Future Work

- Biomass pyrolysis oil testing
- Continued oil sands bitumen testing
- Waste oil testing
- Other feedstocks of interest to DOE
- Preliminary design of continuous system, process simulation, economics
- Teaming with a major industrial gas supplier as a partner
- TDA has a patent application on file covering the process

Summary

Hydrogen for Refineries

- HyRes can be used to generate hydrogen from middle distillates (viable alternative for naphtha steam reforming)
- HyRes can be used to generate hydrogen from refinery residuum feedstocks (e.g. ATB and VTB) at \$4/1000 CF
- Catalyst is regenerated between reforming cycles by burning off coke and sulfur in air before they can deactivate the catalyst
- No catalyst deactivation (well over 500 hours of laboratory testing with assorted heavy refinery feedstocks)
- Gives refiners an alternative to coking or asphalt production from bottom of the barrel fractions
- Can generate H₂ from bitumen for syncrude production
- No oxygen separation plant is needed and no nitrogen ends up in the syngas because steam reforming and catalyst regeneration are done in separate vessels

Summary - Continued

Renewable Hydrogen

- HyRes can be used to generate renewable H₂ from raw, whole biomass fast pyrolysis oil
- Can operate at steam/carbon ratios of 1 2
- HyRes system is <u>much</u> simpler than a gasifier
- HyRes process is <u>much less expensive</u> than a gasifier
- HyRes better suited to small distributed plants compared to a gasifier

