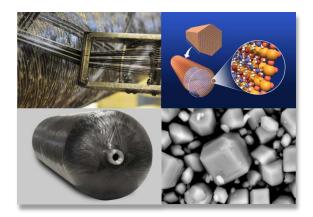


U.S. DEPARTMENT OF

Hydrogen Storage Program Area -Plenary Presentation-

Ned T. Stetson Fuel Cell Technologies Office

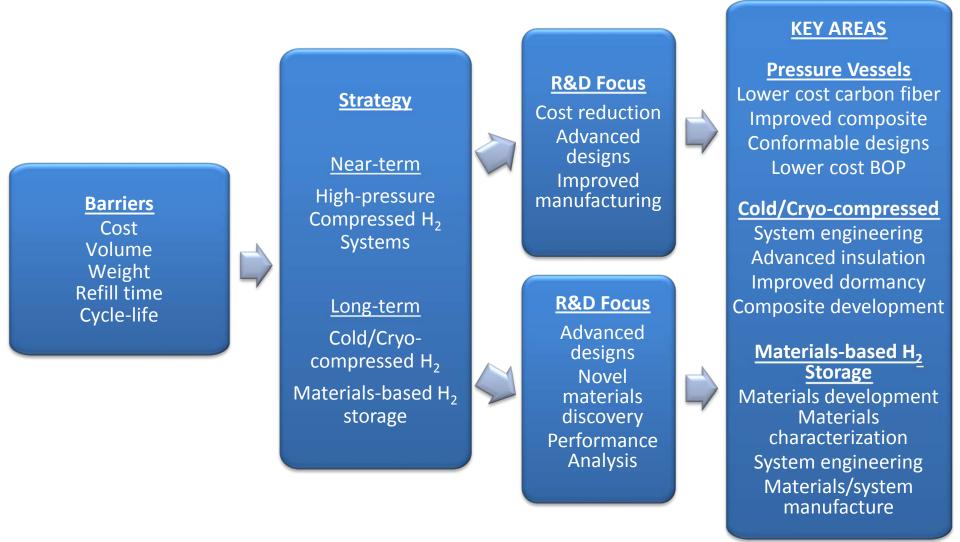
2014 Annual Merit Review and Peer Evaluation Meeting June 16 - 20, 2014


Goals and Objectives

GOAL: Develop and demonstrate advanced hydrogen storage technologies to enable successful commercialization of fuel cell products in transportation, portable, and MHE applications

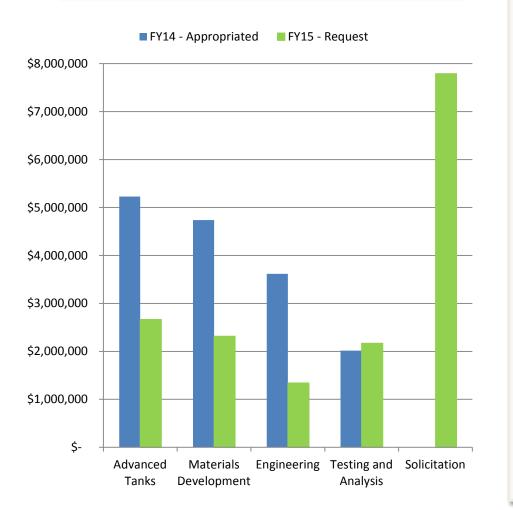
Objectives

- By 2017, develop onboard vehicle H₂ storage systems achieving 1.8 kWh/kg (5.5 wt% H₂) and 1.3 kWh/L (40 g H₂/L) at \$12/kWh (\$400/kg H_{2 stored}) or less.
- By 2020, demonstrate H₂ storage systems in material handling equipment applications achieving 1.7 kWh/L (50 gH₂/L) and able to be recharged with 2 kg of H₂ within 2.8 minutes at \$15/kWh (\$500/kg H_{2 stored}) or less.
- For widespread commercialization of fuel cell electric vehicles across the full range of vehicle platforms, ultimately develop onboard H₂ storage technologies achieving 2.5 kWh/kg (7.5 wt.% H₂) and 2.3 kWh/L (70 g H₂/L) at \$8/kWh (\$266/kg H_{2 stored}) or less.
- Other specific objectives are in the Hydrogen Storage Section of the MYRD&D Plan.



Strategy

Comprehensive strategy to address barriers for near-term and long-term technologies



- Near-term: initial commercial introduction of fuel cell electric vehicles using 700 bar compressed H₂ storage:
 - Reduce system costs
 - Develop lower cost precursors for carbon fiber
 - Develop alternative materials to carbon fiber
 - Identify alternative materials to SS316L for balance-ofplant components
 - Develop innovative tank concepts with improved performance
- Longer-term: develop and demonstrate technologies with potential to meet all storage performance targets simultaneously.
 - Develop and demonstrate cold/cryo-compressed hydrogen storage technologies
 - Develop materials-based hydrogen storage technologies
 - Investigate novel, innovative concepts

Budget

FY 2014 Appropriation = \$15.6M FY 2015 Request = \$16.3M

EMPHASIS

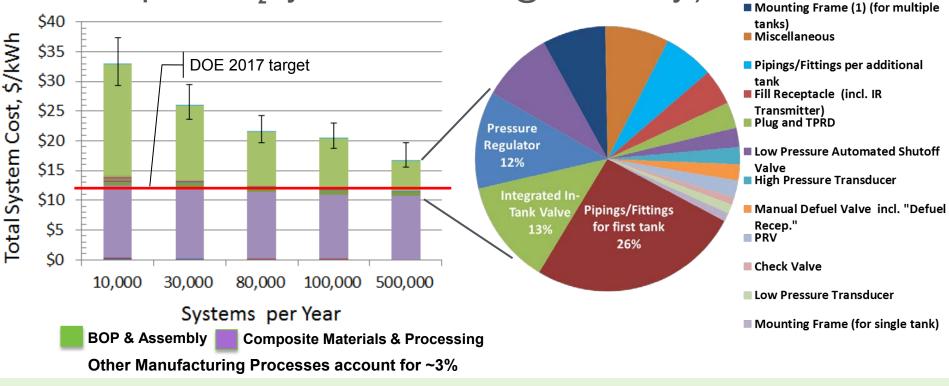
- Systems approach through the Engineering CoE, in collaboration with independent materials development projects, to achieve light-duty vehicle targets
- Close coordination with EERE Offices on carbon fiber composites, including Advanced Manufacturing, Vehicle Technologies and Bioenergy Technologies Offices
- Focus on cost reduction for high pressure tanks
- Increased analysis efforts for low to high production volumes, particularly analyses of balance-of-plant costs
- Portfolio is balanced between mid- and long term
- More emphasis on early market applications

Current Status of H₂ Storage Technologies

Storage Targets	Gravimetric kWh/kg (kg H ₂ /kg system)	Volumetric kWh/L (kg H ₂ /L system)	Costs \$/kWh (\$/kg H ₂)	Full comprehensive sets of hydrogen storage targets can be found in the Program's	
2017	1.8 (0.055)	1.3 (0.040)	\$12 (\$400)	Multi-year Research, Development and Demonstration Plan:	
Ultimate	2.5 (0.075)	2.3 (0.070)	\$8 (\$266)	<u>http://energy.gov/sites/</u> prod/files/2014/03/f12/s torage.pdf	
Projected H ₂ Storage System Performance	Gravimetric kWh/kg	Volumetric kWh/L	Costs [*] \$/kWh		
700 bar compressed (Type IV)	1.5	0.8	17	 Compressed H₂ system projections from Strategic 	
350 bar compressed (Type IV)	1.8	0.6	13	 Analysis & Argonne National Laboratory Material-based system projections from Hydrogen Storage Engineering Center of Excellence 	
Metal Hydride (NaAlH4)	0.4	0.4	TBD		
Sorbent (MOF-5, 100 bar) MATI, LN2 cooling [HexCell, flow-through cooling]	1.1 [1.2]	0.7 [0.6]	16 [13]		
Chemical Hydrogen Storage (AB-50 wt.%)	1.7	1.3	16	* Projected to 500,000 units / year	

Strategy: Understanding System Costs

Fuel Tank Controller

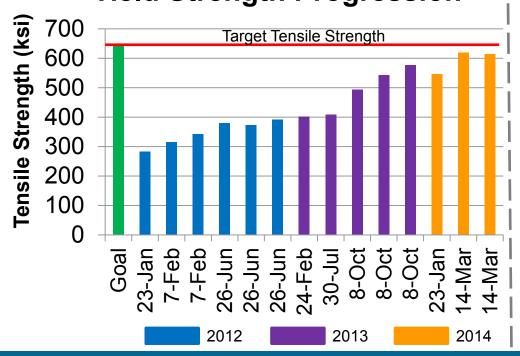

Carbon fiber composite cost dominate costs at high manufactured volumes, while BOP can dominate costs at low volumes for high-pressure H₂ systems

Breakout of BOP

(single 5.6kg H₂ tank

@ 500K units/yr)

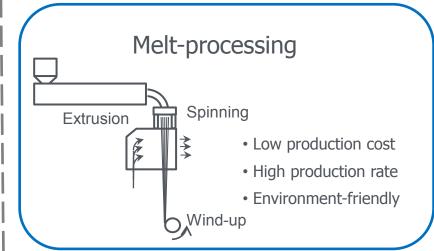
Cost estimates for variable volume manufacturing of 700-bar Type IV compressed H₂ systems



Piping/fittings, integrated in-tank valve and pressure regulator are the high cost items for BOP (SA – ST100)

Accomplishments: Lower cost precursors for carbon fiber

Commercial Textile (PAN/MA) Precursors (ORNL - ST099)

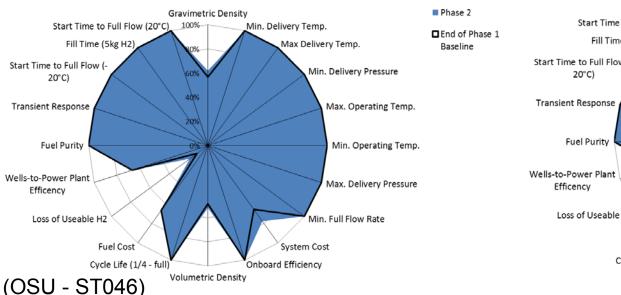

- Precursors account for ≥55% of cost of carbon fibers
- Textile PAN fibers ~25% lower cost than conventional PAN fiber precursors
- Potential fast-track, drop-in replacement precursor

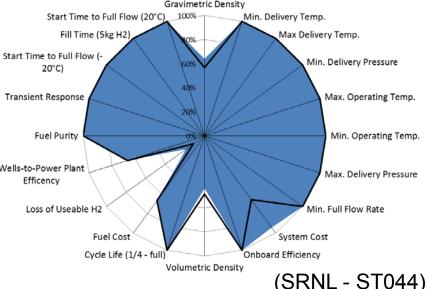
Yield Strength Progression

Melt Processable PAN Precursors (ORNL - ST093)

- Target: >25% reduction in costs of manufacturing of carbon fiber
- Cost reduction achieved through lower capital costs and lower processing costs vs conventional wet spinning processes
- Alternative melt processable formulations to be developed and demonstrated
- Feasibility demonstrated, scale-up in process

Enhanced Materials and Design Parameters for Reduced Cost H₂ Storage Tanks (PNNL - ST101)


- Improvements in Gravimetric Capacity, Volumetric Capacity and System Cost vs. Baseline 700 bar Type IV tank identified through:
 - Nanoscale resin additives
 - Alternative fiber placement and multiple fiber types


- Further improvements projected through:
 - Reduced temperature operation (200 K (-73 °C)) with
 - Reduced pressure operation (500 bar)
- Similar H₂ density w/ substantially reduce system mass & cost (targeting 30% total cost reduction)

Gravimetric Density Start Time to Full Flow (2000) Min. Delivery Temp.	(targeting 30% total cost reduction)		
(20°C) Fill Time (5kg H2) 80% Max Delivery Temp.			
Start Time to Full Flow (-20°C) 40%	ime to Full Flow (-20°C) Min. Delivery Pressure		
Transient Response Fuel Purity 0% Min. Operating Temp	Operating	700 bar at 15 °C	500 bar at -73 °C
Wells-to-Power Plant Efficency Loss of Useable H2 Min. Full Flow Rate	e Gas Density	40 g/l	42 g/l
Fuel Cost Cycle Life (1/4 - full) Volumetric Density Baseline tank	Tank Mass	93.6 kg	48.2 kg

Accomplishments: Hydrogen Sorbent Systems

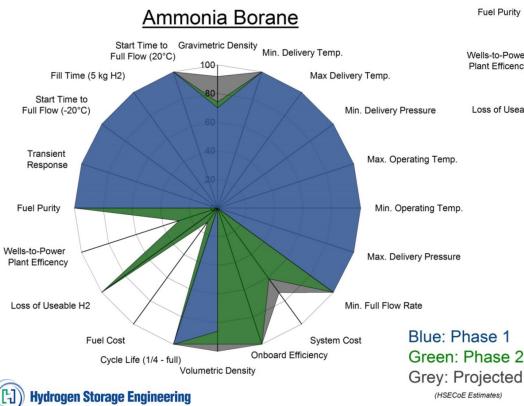
End of Phase 2 MATI System

End of Phase 2 Hex-Cell System

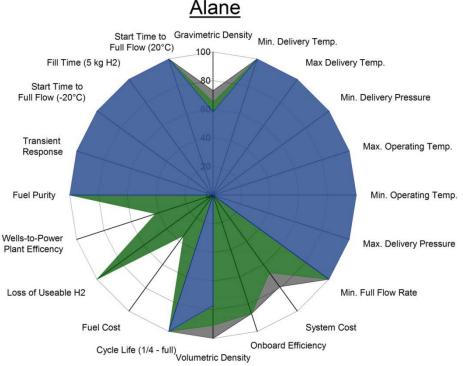
Hydrogen Storage Engineering

CENTER OF EXCELLENCE

Phase III of HSECoE: construct, test & evaluate 2 sorbent prototypes using 2 different heat exchanger (HX) concepts:


- "Hex-Cell" a passive HX loaded w/ sorbent powder & flow-through H₂ gas for cooling
- "MATI" an active microchannel HX w/ compacted sorbent & liquid N₂ cooling.

Performance of prototypes will validate system models and be evaluated against DOE targets.



Accomplishments: Chemical Hydrogen Storage Systems

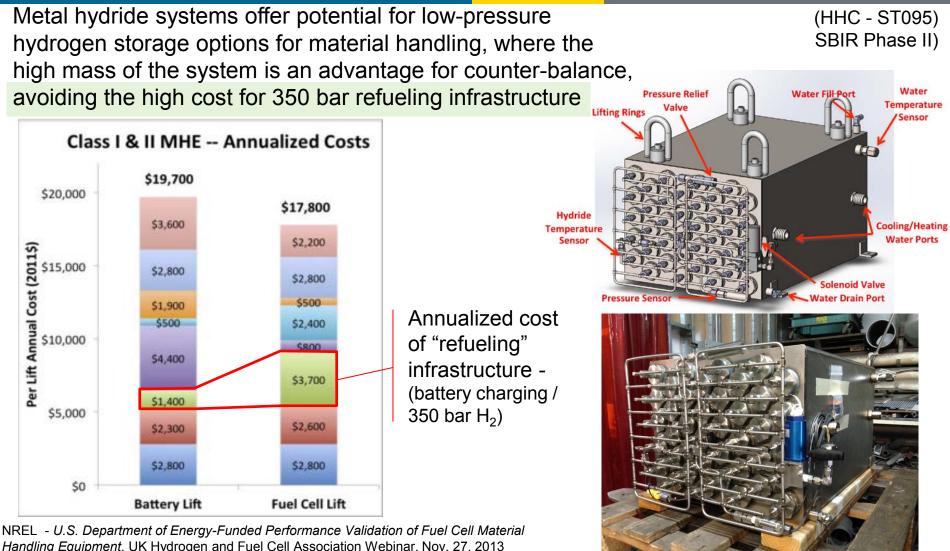
Validation of HSECoE system models indicate off-board regenerable chemical hydrogen storage systems have potential to meet many of the onboard storage targets (LANL - ST007)

CENTER OF EXCELLENCE

Breakthrough needed in development of fluid phase chemical hydrogen storage materials able to be regenerated at low-cost with high-efficiency.

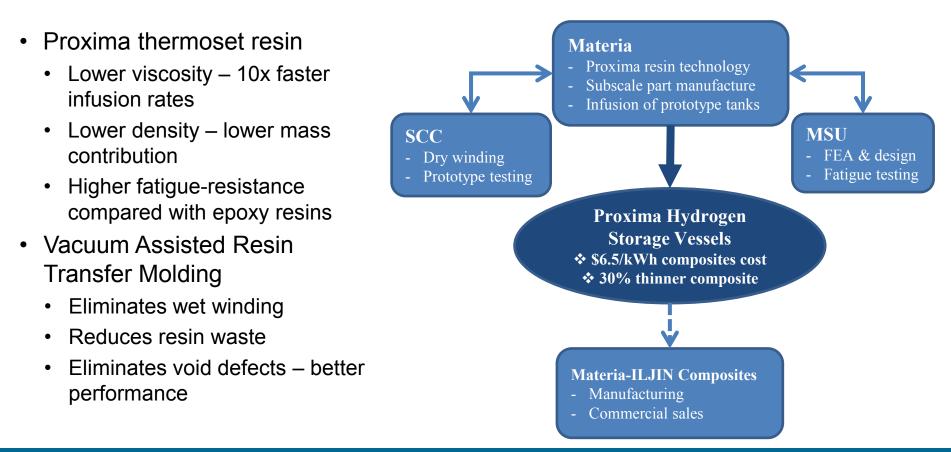
HSECoE system modeling helps with determination of chemical hydrogen storage materials' property requirements (LANL - ST007)

provides guidance for materials discovery efforts


Parameter	Units	Range*
Minimum Material capacity (liquids)	g _{H2} / g _{material}	~ 0.078 (<i>0.085</i>) [†]
Minimum Material capacity (solutions)	g _{H2} / g _{material}	~ 0.098 (0.106)†
Minimum Material capacity (slurries)	g _{H2} / g _{material}	~ 0.112 (0.121) [†]
Endothermic Heat of Reaction	kJ / mol H ₂	≤ +17 (<i>15</i>) [†]
Exothermic Heat of Reaction	kJ / mol H ₂	≤ -27
Maximum Reactor Outlet Temperature	С°	250
Impurities Concentration	ppm	No <i>a priori</i> estimates can be quantified
Media H ₂ Density	kg H ₂ / L	≥ 0.07
Regeneration Efficiency	%	≥ 66.6%
Viscosity	cP	≤ 1500

Accomplishments: Low-pressure storage for MHE

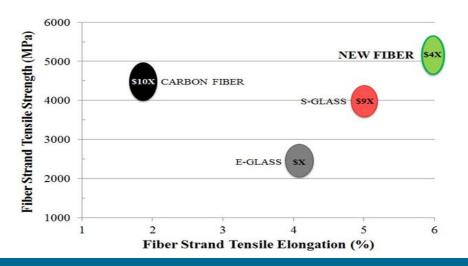
High-pressure (350 bar) refueling infrastructure a key barrier for widespread adoption of hydrogen fuel cell forklifts



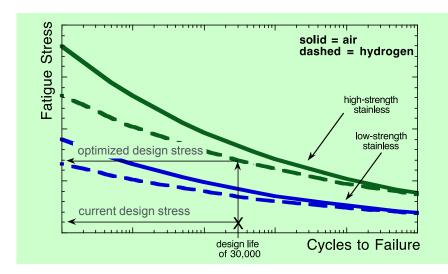
13

Low viscosity, high-toughness proprietary resin system coupled with Vacuum Assisted Resin Transfer Molding for lower cost, improved 700 bar tanks

New Project being initiated in FY2014 targets a >30% reduction in cost and >20% reduction in mass of carbon fiber composites for 145 L (internal) volume, 700 bar hydrogen storage tanks (Materia Inc.)



Driving down the costs of hydrogen storage systems through lower costs composites and alternative materials for balance-of-plant components


New project to develop ultra-high strength glass fiber for ~50% reduction in fiber composites costs for 700 bar Type IV H₂ Storage Systems (PPG Industries)

- Novel glass fiber exceeds tensile strength of T-700 carbon fiber
- Novel glass fiber manufacturing process
- Substantially lower cost fiber composites compared with T-700 carbon fiber composites
- Will determine stress rupture behavior to establish required safety factors

New project to screen and identify alternative lower-cost, high-strength steels for use in balance-of-plant components in place of 316L stainless steel (SNL)

- Will determine maximum allowable stress to achieve a design life of 30,000 fatigue cycles
- Will establish CSA CHMC1 method for qualifying materials for H₂ service

Lower costs through optimization of use of fiber composite properties and advanced designs for improved performance and packaging

New SBIR Phase II project to investigate use of graded construction to reduce cost of carbon fiber composites in 700 bar H ₂ Storage Systems (CTD - ST110)	New project to design advanced cryo- compressed H ₂ storage systems and evaluate high-pressure cryo-pump refueling (LLNL – ST111) • Evaluate 875 bar, 100 kg/hr delivery
 Targets demonstration of 10-25% cost reduction 	cryo-pump for fast fill refueling of cryo-compressed H ₂
 Due to thick wall effect, outer composite layers strained 20-30% less than inner layers Cost reduction realized through use of lower 	 Evaluate high L/D ratio cryo-compressed 700 bar tanks with: thin vacuum gap
cost, lower strength fibers in outer layers	 high fiber content composites sized for 5.6 kg H₂ useable capacity demonstrate cycle-life of fill 1500 cycles
1.5 (%) 1.4 ia	 Targets exceeding 6 wt.% H₂ and 40 g H₂/L 1200 1200
(%) 1.4 Hoop strain (%)	$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & $
1.0 Inside wall Outside wall	
Wall thickness (in.)	dimensions: mm

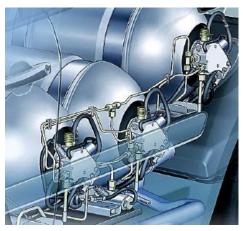
Innovative hydrogen storage materials development and production processes to advance the state-of-the-art in materials-based hydrogen storage

Improve the kinetics and thermodynamics of $Mg(BH_4)_2$ for Hydrogen Storage (a 14 wt.% material) (LLNL)

- Uses a combined theory/experiment approach
 - Multi-scale modeling of kinetics and reaction pathways for nanoparticles
 - Novel synthesis and characterization approach for direct validation of predictions
- Boron-based hydrogen storage: ternary borides and beyond (potential for ≥ 11 wt.% materials) (HRL Laboratories)
 - Mixed-metal borohydrides (M_aM_b(BH₄)₂ designed to maintain single hydrogenated and dehydrogenated phases
 - Improved kinetics by avoiding solid phase diffusion of non-hydrogen atoms
 - Lithiated boranes a new class of materials
 - Reversible exchange between B-H/Li-H and B-Li/H₂
 - Fast kinetics expected due to elimination of rearrangement of boron networks

Low-cost α -alane (AIH₃) production - a 10wt.%, 149 g H₂/L hydrogen storage material (Ardica Technologies)

- Develop an economical electrochemical cell design for large-scale production of α-alane based on SRNL demonstrated process
 - Alane to be used in low-power military and consumer electronic fuel cell power devices
- Targets α-alane production costs of <\$5/kg


Gaps and other areas to be addressed further

U.S. DEPARTMENT OF

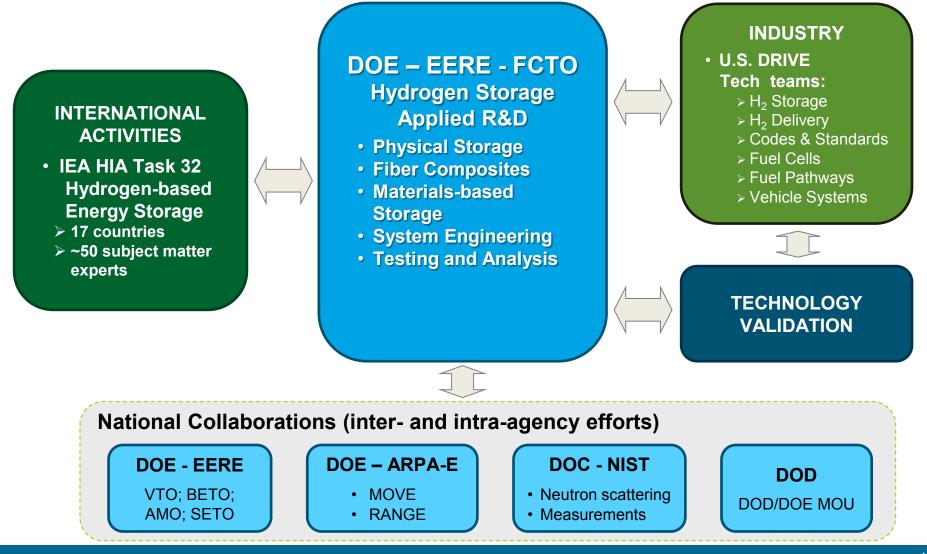
Interface between onboard the vehicle and fueling infrastructure

- Discussions between fuel infrastructure and vehicle stakeholders to understand issues related to fast fueling for high-pressure compressed H₂
- Requirements for fueling of materials-based storage technologies better understood from HSECoE efforts

Balance-of-plant components

- Costs of BOP can exceed cost of carbon fiber composites at low-volume of manufacture
- Multi-tank systems have considerably higher BOP costs
- Materials of construction currently almost exclusively SS316L
- Starting to address issue with more thorough analysis and identification of alternative materials of construction

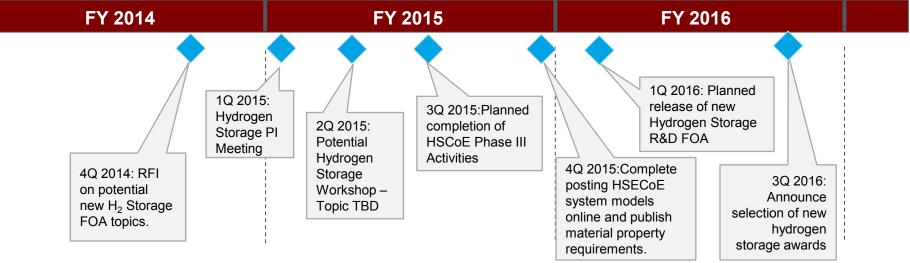
Advanced H₂ Storage Systems for Early Markets


- One SBIR Phase II project developing low-pressure metal hydride systems for FC forklift application
- New project for low-cost alane for use in low-power FC products

Collaborations

Applied R&D is coordinated among national and international organizations

Low-cost Compressed H₂ Systems:


- Achieving tensile strength with low-cost, textile-grade PAN precursors
- Initiating new efforts investigating alternative resins, fibers, materials for BOP and manufacturing processes

Hydrogen Storage Engineering Center of Excellence:

- Phase III has commenced, focused on 2 prototype sorbent systems
- Phase II showed Chemical Hydrogen Storage Systems able to meet most onboard storage targets, but not well-to-powerplant efficiency or fuel cost

Advanced Hydrogen Storage

- Continuing efforts on cold/cryo-compressed H₂ storage
- Continuing efforts developing novel hydrogen storage materials

Contacts

For more information contact:

Ned Stetson – Program Manager 202-586-9995 ned.stetson@ee.doe.gov					
Grace Ordaz	Jesse Adams				
202-586-8350	720-356-1421				
grace.ordaz@ee.doe.gov	jesse.adams@go.doe.gov				
Channing Ahn	Katie Randolph				
202-586-9490	720-356-1759				
channing.ahn@ee.doe.gov	katie.randolph@go.doe.gov				
Kathleen O'Malley Support contractor 202-586-4786 kathleen.o'malley@ee.doe.gov					

http://energy.gov/eere/fuelcells/fuel-cell-technologies-office

Collaborations

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

HYDROGEN IMPLEMENTING AGREEMENT

Energy Efficiency and Renewable Energy

- Vehicle Technologies Office
- Bioenergy Technologies Office
- Advanced Manufacturing Office
- Solar Energy Technologies Office

Advanced Projects Agency - Energy

- Methane Opportunities for Vehicular Energy (MOVE)
- Robust Affordable Next Generation Energy Storage Systems (RANGE)

Government-Industry

• U.S. Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. DRIVE)

Interagency

- U.S. Department of Defense (DOD-DOE MOU)
- U.S. Department of Commerce (NIST)

International

- International Energy Agency H₂ Implementing Agreement
 - Task 32 Hydrogen-based energy storage
 - 17 countries with ~50 participating experts