

Chemical Hydrogen Rate Modeling, Validation, and System Demonstration

Troy A. Semelsberger (P.I.)

Ben L. Davis, Brian D. Rekken, Biswajit Paik, Eric Brosha, and Jose I. Tafoya

DOE Fuel Cell Technologies Program Annual Merit Review, Washington, DC June 16-20, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information

UNCLASSIFIED

Project ID: ST007

Overview

Timeline

- Project Start Date: Feb FY09
- Project End Date: FY14
- Percent Complete: 91%

Budget

- •Total Project Funding: \$4.1M •DOE Share: \$4.1M
- Funding:
 - 2013: \$880K
 - 2014: \$525K

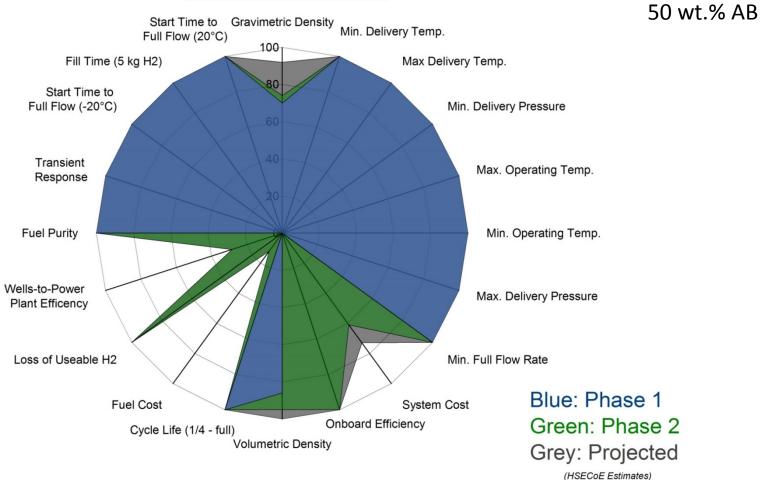
Barriers

- A. System Weight and Volume
- B. System Cost
- C. Efficiency
- D. Durability/Operability
- E. Charging/Discharging Rates
- G. Materials of Construction
- H. Balance of Plant Components
- J. Thermal Management
- K. System Life-Cycle Assessments
- R. By-Product/Spent Material Removal

Overall Objectives/Relevance

- 1. Develop chemical hydrogen storage system models
- 2. Develop chemical hydrogen storage material property guidelines
- 3. Develop and demonstrate "advanced" engineering concepts/components

Relevance


- Provide a validated modeling framework to the Energy Research Community (e.g., H2A)
- Provide an internally consistent operating envelop for materials comparison wrt
 - System/Component mass, volume, and cost
 - System performance
- Provide viable material properties that meet DOE 2017 system targets
- Identify and advance engineering solutions to address material-based non-idealities
- Identify, advance, and validate primary system level components

Project Status (DOE 2017 Targets)

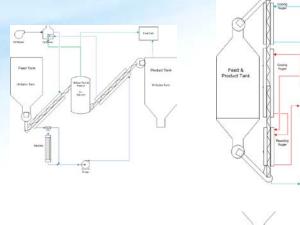
Ammonia Borane

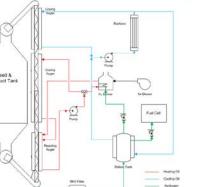
- Projections meet 16 of the DOE 2017 system level targets
- Remaining challenges: Fuel Cost, System Cost, WTPP, Gravimetric Density

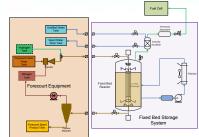
Project Status (DOE 2017 Targets)

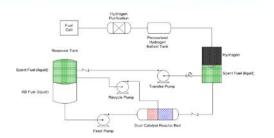
Alane 50 wt.% Alane Start Time to Gravimetric Density Min. Delivery Temp. Full Flow (20°C) 100 Fill Time (5 kg H2) Max Delivery Temp. 80 Start Time to Full Flow (-20°C) Min. Delivery Pressure Transient Max. Operating Temp. Response Min. Operating Temp. **Fuel Purity** Wells-to-Power Max. Delivery Pressure Plant Efficency Loss of Useable H2 Min. Full Flow Rate Blue: Phase 1 System Cost **Fuel Cost** Green: Phase 2 Cycle Life (1/4 - full) Volumetric Density **Onboard Efficiency** Grey: Projected

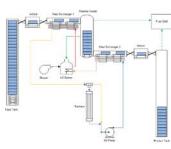
(HSECoE Estimates)

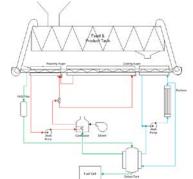

- Projections meet 15 of the DOE 2017 system level targets
- Remaining challenges: Fuel Cost, System Cost, WTPP, TTW Gravimetric Density

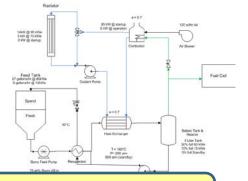

System Architect Section





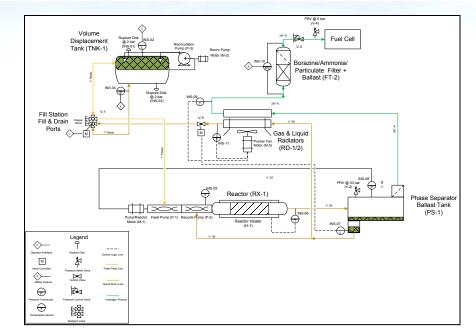

UNCLASSIFIED

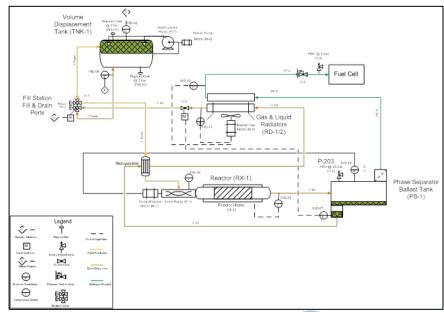




- CD Changer
- Rope
- Printer

- Gumball
- Fountain
- Heated Roller
- Soda Can
- Membrane Reactor
- 8 Track

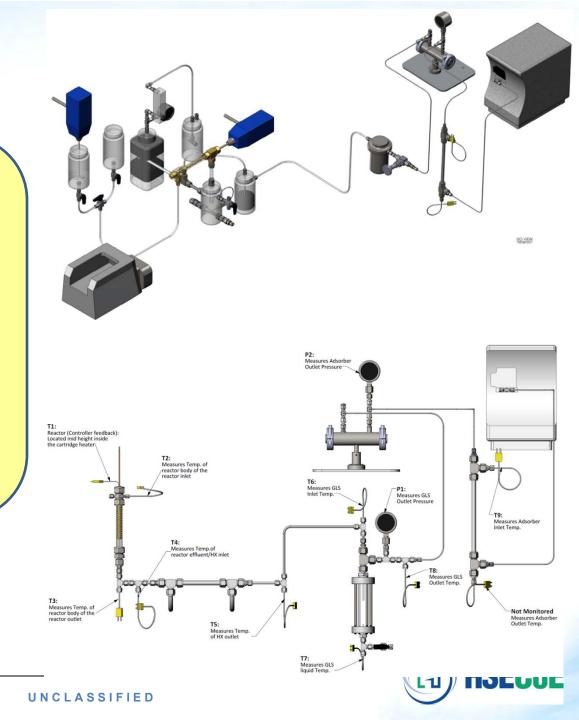

HSECOE


Numerous system designs developed for solid, liquid, and slurry phase media

NATIONAL LABORATORY

System Designs (exothermic & endothermic)

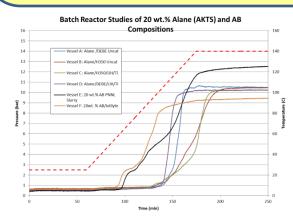
- Performance
- Mass
- Volume
- Balance of plant components
- Cost



Accomplishments Designed, Built, & Validated System Components Volume displacement tank **Gas-liquid Separator** 1.5 Hydrogen Purification ۲ Fuel gauge sensor Reactors (slurry and liquid) 0.8 600 0.6 85 kHz 87.2 kHz 90 kHz Borazine 500 0.4 400 0.2 Amplitude (mV) 300 CN-210-15 100 150 Time(min) Drain 200 100 Wavenumber (cm⁻¹) 0.2 0.4 0.6 0.8 1.2 1.4 1 Gas/Liquid Separator Measured H., g **HSECoE** EST 1943

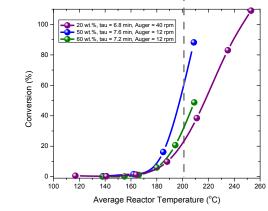
UNCLASSIFIED

Lab-scale Integrated systems

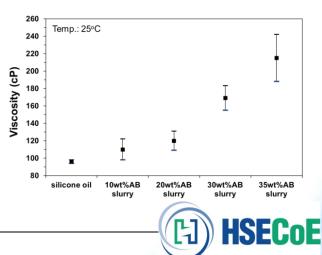

- Major system components
- Reaction characteristics
 - Alane slurry (6.5 wt.% H₂)
 - MPAB (3.9 wt.% H₂)
 - AB slurry (5 wt.% \overline{H}_2)
- Fuel-cell grade hydrogen (99.99%)

Material Properties

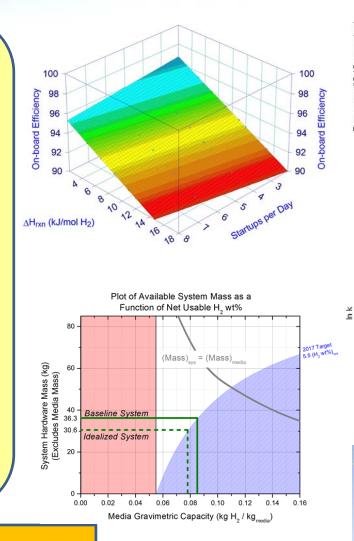
- Slurry development ٠
- Novel CH liquid development ٠
- Impurity quantification ۲
- **Kinetics**

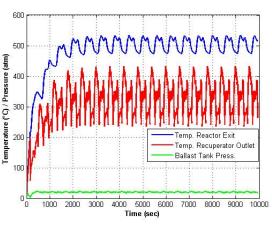

EST.1943

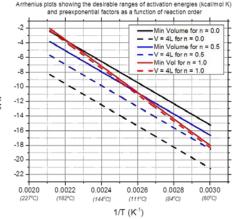


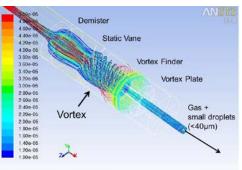


Alane conversion as a function of reactor temperature (C), space time, and auger speed for 20, 50 & 60 wt. % Alane slurries






UNCLASSIFIED


Modeling Tools

- System Models
 - Exothermic
 - Endothermic
 - Performance
 - Cost
- Material properties
 - Kinetics
 - Impurities
 - Regeneration efficiency
 - On-board efficiency
 - Heats of reaction
 - Gravimetric capacity
 - Volumetric capacity

Particle Traces Colored by Particle Diameter (m) Sep 09, 201 ANSYS FLUENT 13.0 (3d, dp, pbns, spe, rke

Tools for:

- Engineering community
- Materials research community

EST.1943

Key Contributions of the Chemical Hydrogen Group

Three Years Ago:

- NO
 - × System designs
 - × System models
 - × Efficiency analyses
 - Flow-through reactor experiments performed with AB or alane
 - × Material property guidelines
 - × Realizable media
- Solids and slurry handling concepts for onboard systems are technically challenging

Substantially increased our working knowledge on Chemical Hydrogen

- System designs
- Material properties
- System models
- System components

Current State:

- Developed material property guidelines
- Developed system models
- Validated all major system components
- Developed numerous designs
- Developed boilerplate system designs for endo- and exothermic media
- Performed WTT & TTW efficiency analyses
- Demonstrated viable reactor designs for fluid-phase media
- Developed preliminary system cost analyses
- Developed novel MPAB liquid
- Demonstrated lab-scale integrated chemical hydrogen storage system
- Developed novel fuel gauge sensor
- Solids and slurry handling concepts for onboard systems remain technically challenging

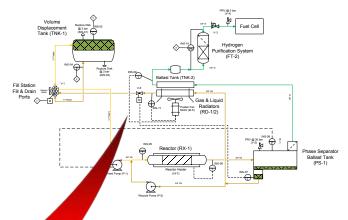
LANL Technical Section

Chemical hydrogen storage material properties

Objective:

Provide chemical hydrogen storage material property guidelines that will allow the overall system to meet the DOE 2017 performance targets

Approach:


- 1. Develop an integrated chemical hydrogen storage system for automotive applications
- 2. Develop a system model that predicts system performance using various drive cycles
- 3. Identify and size components that are material dependent
- 4. Determine material properties to meet DOE 2017 performance targets

Approach: Chemical Hydrogen Material Properties

ltem #	Description		Material	Wt (kg)	Vol (L)		
		Tan	ks and Tubing				
TNK-1	Volume Displacement	Tank	High Density Polyethylene	6.2 65.5			
NA	Fill and Drain Lines		10 ft of 1/2" Plastic	0.17 0.38			
NA	Low T and P Lines	Item #	Description	Material		Wt	Vol IL
NA	High T and P Lines	ite in a	De sei puori	Material		(kg)	YON (L)
INS-01	Rupture Disk	Return	Loop				
INS-02	Level Sensor for Volun Displacement Tank	PS-1	Gas Liquid Separator		347/347L SS	3.2	3.7
INS-03	Rupture Disk	INS-08	Pressure sensor	-	316L SS	0.14	0.001
INS-04	Pressure sensor	V-2	Pressure Relief Valve	-	0102.00	0.3	0.1
Feed L	oop	RD-2	Liquid Radiator		304 SS	2.08	2.9
V-1	2 Multiport Valves with	RD-2	Liquid Radiator Header	304.55		0.16	0.06
V.1	Flapper Valves	KD-Z	Liquid Radiator Header 304 55		304 55	0.10	0.00
P-1	Feed Pump		Liquid Radiator Fan Ultra Thin				
INS-05	Temperature sensor	M-5	Line 12V Electric Fan (Puller) Nylon		1	5.9	
RX-1	Reactor	INS-11	Temperature sensor	-		0.1	0.02
H.1	Reactor Heater	V-5	Cortrol Valve		Brass	1.7	0.75
INS-06	Temperature sensor	Hydrog	gen Discharge				
INS-07	Level Sensor for P/S	FT-1	Coalescing Filter		SS	12	0.34
Recycl	Loop	RD-2	Gas Radiator	-	304 SS	0.3	0.3
P-2	Recycle Pump	RD-2	Gas Rediator Header	-	304 SS	0.16	0.03
		INS-09	Temperature sensor	-		0.1	0.02
		INS-10	Pressure Switch	-		0.1	0.001
		FT-2	H2 Clean-Up System			3.2	4
		TNK-2	Additional Ballast Tank	Alun	inum, L/D =4 , SF = 1.5	2.6	15
		FT-4	Particulate Fiter		SS	1.2	0.34
		V-3	Pressure Regulator Gas			0.6	0.5
		V-4	Pressure Relief Valve			0.6	0.16

Systems Components

Parameter	Units	Ran
Minimum Material capacity (liquids)	g_{H2} / $g_{material}$	~ 0.078
Minimum Material capacity (solutions)	g _{H2} / g _{material}	~ 0.0
Minimum Material capacity (slurries)	g _{H2} / g _{material}	~ 9
Endothermic Heat of Reaction	kJ / mol H ₂	
Exothermic Heat of Reaction	kJ / mol H ₂	
Maximum Reactor Outlet Temperature	°C	
Impurities Concentration	ppm	No <i>a priori</i> esա. can be quantified
Media H ₂ Density	kg H ₂ / L	≥ 0.07
Regeneration Efficiency	%	≥ 66.6%
Viscosity	cP	≤ 1500

DOE 2017 System

Storage Parameter	Units	2010	2017	Ultimate	
System Gravimetric Capacity:	kWh/kg	1.5	1.8	2.5	
Usable, specific-energy from H ₂ (net	(kg H ₂ kg	(0.045)	(0.055)	(0.075)	
useful energy/max system mass)	system)				
System Volumetric Capacity:	kWh/L	0.9	1.3	2.3	
Usable energy density from H ₂ (net	(kg Hy/L system)	(0.028)	(0.040)	(0.070)	
useful energy/max system volume)					
Storage System Cost	\$/kWh net	TBD	TBD	TBD	
	(S/kg H ₂)	(TBD)	(TBD)	(TBD)	
 Fuel cost 	S/gge at pump	3-7	2-4	2-4	
Dent Market Constant	- Mr. Schuch			14	
 Durability/Operability; Operating ambient temperature 	°C	-30/50 (sun)	-40/60 (sun)	-40/60 (sun)	
 Operating ambient temperature Minimax delivery temperature 	e e	-30/50 (sun) -40/85	-40/60 (sun) -40/85	-40/00 (SUR) -40/85	
Operational cycle life (1/4 tank to full)	Cicles	1000	1500	1500	
 Min delivery pressure from storage 	oyona	1000	none-	1000	
system; FC= fuel cell, ICE= internal	bar (abs)	5 FC/35 ICE	5 FC/35 ICE	3 FC/35 ICE	
combustion engine					
 Max delivery pressure from storage 	ber (abs)	12 FC/100 ICE	12 FC/100 ICE	12 FC/100 ICE	
system	5	90	90	90	
 Onboard Efficiency "Well" to Powerplant Efficiency 	14				
	%	60	60	60	
Charging / Discharging Rates:					
 System fill time (5 kg) 	min	4.2	3.3	2.5	
Minimum full flow rate	(kg Hylmin) (p/s)KW	(1.2) 0.02	(1.5)	(2.0)	
 Start time to full flow (20°C) 	(ps)kn s	5	5	5	
 Start time to full flow (20°C) Start time to full flow (20°C) 	5	15	15	15	
 Transient response 10%-90% and 90% - 		0.75	0.75	0.75	
0% *	\$	1.11	0.05	0.05	
Fred Back dl from showed	AC 11	SAE J2719 and ISO/PDTS 14687-2		S 14687-2	
Fuel Purity (H ₂ from storage)	% H ₂		(99.97% dry basis)		
Environmental Health & Safety:					
Permettion & leakage	Scolt				
Taxicity		Meets	or exceeds applicable	standards	
Safety					
 Loss of useable H₂ 	(gh)kg H ₂ stored	0.1	0.05	0.05	
Useful constants: 0.2778 kWh/MJ; 33.3 kWh		encline emivales	t		

UNCLASSIFIED

Parameter	Units	Range*
Minimum Material capacity (liquids)	${f g}_{H2}$ / ${f g}_{material}$	~ 0.078 (<i>0.085</i>) [†]
Minimum Material capacity (solutions)	${f g}_{{\ H2}} / {f g}_{{\ material}}$	~ 0.098 (<i>0.106</i>) [†]
Minimum Material capacity (slurries)	${f g}_{H2}$ / ${f g}_{material}$	~ 0.112 (<i>0.121</i>) [†]
Endothermic Heat of Reaction	kJ / mol H_2	≤ +17 (<i>15</i>) [†]
Exothermic Heat of Reaction	kJ / mol H_2	≤ -27
Maximum Reactor Outlet Temperature	°C	250
Impurities Concentration	ppm	No <i>a priori</i> estimates can be quantified
Media H ₂ Density	kg H_2 / L	≥ 0.07
Regeneration Efficiency	%	≥ 66.6%
Viscosity	cP	≤ 1500

* (a) parameter values are based on a specific system design and component performance with fixed masses and volumes (b) values outside these ranges do not imply that a material is not capable of meeting the system performance targets (c) the material property ranges are subject to change as new or alternate technologies and/or new system designs are developed (d) the minimum material capacities are subject to change as the density of the composition changes due to reductions in the mass and volume of the storage tank or reductions in system mass are realized [†] values outside of parentheses are the values that correlate to the idealized system design (i.e., 30.6 kg) and the values in parentheses are those that correlate to the base system design (36.3 kg)

EST.1943

Arrhenius Parameters	Units	Range*
Kinetics: Activation Energy	kJ / mol	117-150
Kinetics: Preexponential Factor		4 x 10 ⁹ – 1 x 10 ¹⁶

Reaction Order (n)	Minimum Temperature (°C)
0.13	100
0.5	125
1	175
2	300

Developed material property guidelines to foster materials development

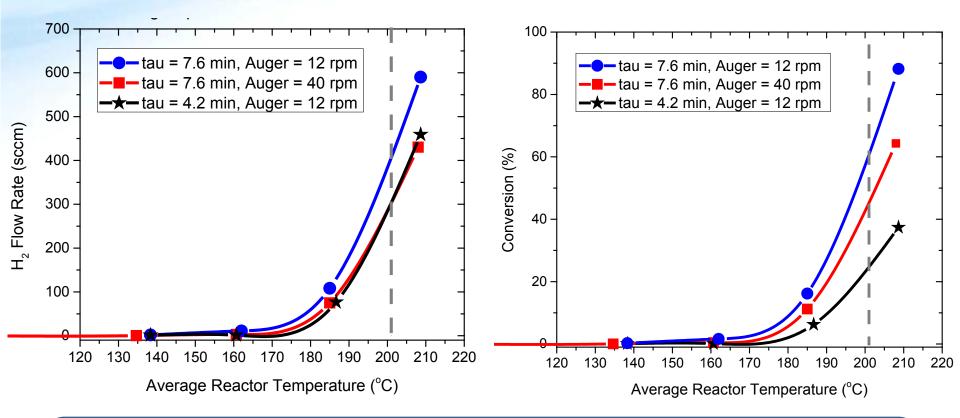
* (a) parameter values are based on a specific system design and component performance with fixed masses and volumes (b) values outside these ranges do not imply that a material is not capable of meeting the system performance targets (c) the material property ranges are subject to change as new or alternate technologies and/or new system designs are developed (d) the minimum material capacities are subject to change as the density of the composition changes due to reductions in the mass and volume of the storage tank or reductions in system mass are realized [†] values outside of parentheses are the values that correlate to the idealized system design (i.e., 30.6 kg) and the values in parentheses are those that correlate to the base system design (36.3 kg)

EST.1943

LANL Technical Section

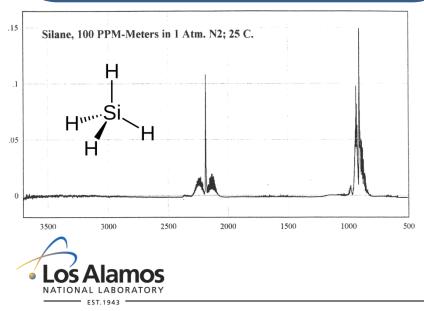
Mechanically mediated reactive transport of slurry compositions

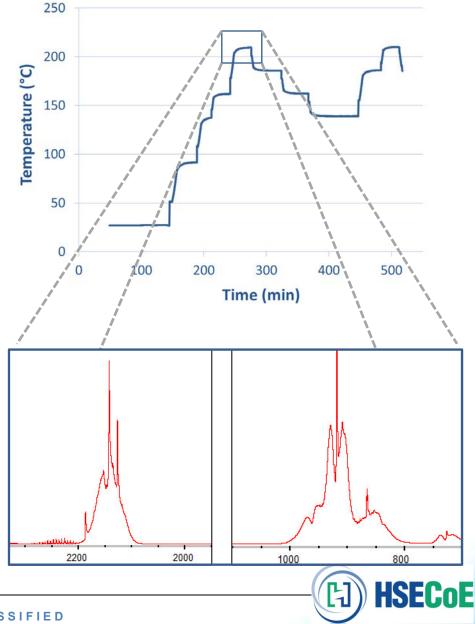
Objectives:

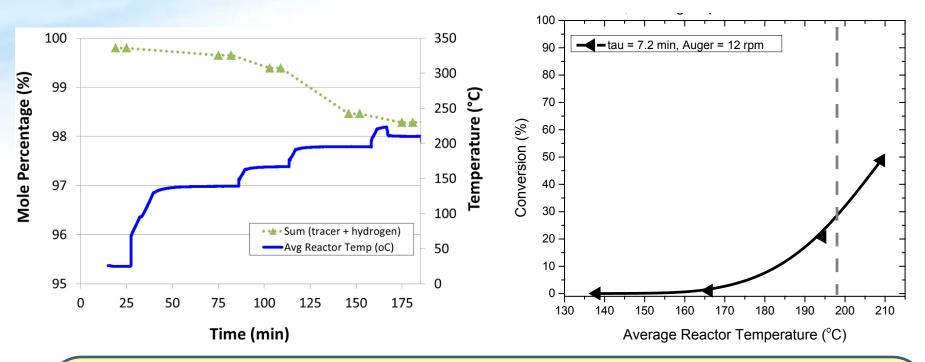

- 1. Design and validate auger reactor for slurries
- 2. Determine flow through reactor performance with slurries
- 3. Determine reaction characteristics of alane slurries
 - Alane loadings (50-65 wt. %)
 - Liquid carrier (Si oil, tetraglyme, pump oil)
 - Dopants (LiH and Ti)

<u>Approach:</u> To design, build, and validate auger reactor for slurry-phase chemical hydrogen storage media with enhanced gas-liquid separation and mitigating strategies for reactor fouling and reactor slugging

50 wt.% Alane/Si Oil/Triton X-15


- Successfully demonstrated auger reactor with 50 wt.% alane slurry and high conversion
- No reactor clogging or fouling observed




50 wt.% Alane/Si Oil/Triton X-15

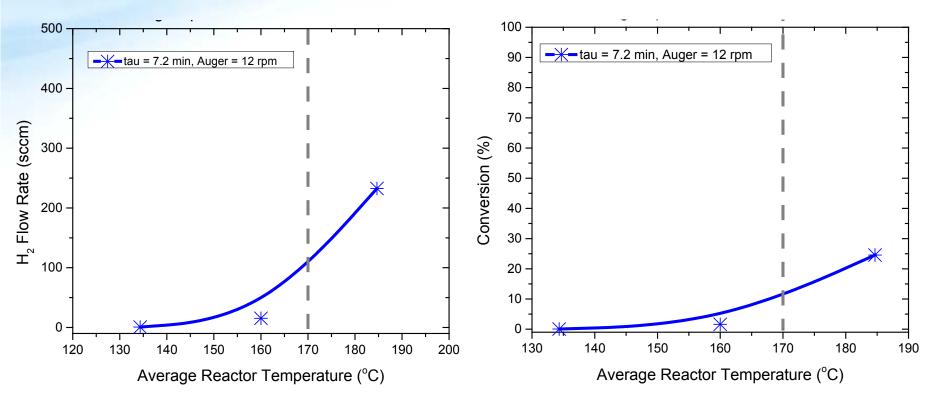
- Si-H IR transitions for temperatures > 200 °C
- Partial vaporization of silicon oil carrier evidenced by cloud formation around 200 °C
- Silicon based carriers resulted in chemical incompatibilities with alane for T > 200°C

60 wt.% Alane/Mechanical Pump Fluid (MPF)



- Successfully demonstrated 60 wt.% slurry
- Mechanical Pump Fluid (non-silicon based) shown to eliminate the production of silane-like impurities
- Hydrogen fuel quality is around 98% (pre-H₂ purification) and > 99.9% (post-H₂ purification)
- Unidentified impurity

60 wt.% Alane/Mechanical Pump Fluid/LiH/Ti



- LiH alone did not promote alane dehydrogenation
- LiH + Ti nearly doubled the conversion rate
- Dopants did not impact reaction selective/impurity production

65 wt.% Alane/Tetraglyme (TG)/Triton X-15

Choice of slurry carrier is critical for reactor operability and durability

- Reactor plugged within 1.5 hrs-no gas or liquid flow
- Flash vaporization of carrier resulted in solids buildup

2013 AMR Reviewer Comments

- It is worth trying MPAB or other liquid hydrogen carriers as a slurry agent for alane or AB
 - We have tried using MPAB as a hydrogen bearing slurry carrier for AB, but the composition is unstable and begins reacting immediately upon mixing.
- Other slurry media should be considered for alane. Silicon oil is a reasonable first choice, but other liquids show much better kinetics.
 - Yes, we have demonstrated that the choice carrier impacts alane dehydrogenation kinetics (i.e., tetraglyme, DEGB, H350, pump oil....). The choice of carrier cannot be chosen solely based on kinetics—boiling point, thermal stability and chemical stability are also important.
- The work on AB should be curtailed and the more generally relevant work on the representative liquid material should be expanded.
 - Agree: Our plans were to extend our work in Phase 3 to include alane slurries, MPAB, and potentially LiAlH₄, but the chemical hydrogen work has been discontinued.

Key Takeaways

- Unified material properties with system designs, system components, system performance and system models
- Developed a set of <u>material</u> property guidelines expected to meet the DOE 2017 <u>system</u> targets
- Choice of carrier is a critical element for system operability and durability for both solution phase and slurry phase chemical hydrogen storage media
 - Boiling point alone cannot be the decision metric for carrier or solvent choice
 - Solvent/carrier thermal stability within the operating temperature range
 - Solvent/carrier must be chemically inert with storage media over the operating temperature range
 - Reactor operating temperatures greater than 0.7 of the solvent/carrier boiling point promote reactor fouling because of the increased rate of carrier evaporation
- Slurry phase reactors are viable but at the expense increased system: mass, volume, efficiency, cost, complexity, and maintenance

.....and most likely a decrease in the hydrogen gravimetric capacity of the slurry

• Neat liquids with operating temperatures greater than 0.7 of its boiling point may require larger reaction volumes with recycle due to limited single-pass conversions

.....and depending on the reaction order may result in limited overall conversion

Future Work

- Wrap up Chemical Hydrogen Work
 - Finalize Model Development
 - Deploy Models
 - DOE Final Report
 - Peer-Reviewed Manuscripts

Collaborations

External Collaborators	Effort	Contact
		J. Wegrzyn (BNL)
Chemical Hydrogen Storage Researchers	Materials Research	T. Baker (U. Ottawa)
		B. Davis (LANL)
U. Draduction & Dolivery Tech Team		M. Pastor (DOE)
H ₂ Production & Delivery Tech Team	WTT Analyses	B. James
LANL Fuel Cell Team	General Guidance	T. Rockward (LANL)
	Fuel Cell Impurities	R. Borup (LANL)
H ₂ Safety Panel	General Guidance/Concerns	S. Weiner
SSAWG	Technical Collaboration	G. Ordaz (DOE)
H ₂ Storage Tech Team	General Guidance	Ned Stetson (DOE)
Argonne National Laboratory	Independent Analyses	R. Ahluwalia

HSECoE Collaborators	Effort	Contact
	Ammonia Scrubbing	B. van Hassel
UTRC	Simulink Modeling	J. Miguel Pasini
	Gas-Liquid Separator	Randy McGee
	MOR	E. Ronnebro
PNNL	System Modeling	K. Brooks
	вор	K. Simmons
NREL	Vehicle Modeling	M. Thornton
SRNL	Slurry Mixing	David Tamburello
Ford	FMEA	Mike Veenstra
EST.1943		(L1) HSECOE

Acknowledgements

U.S. Department of Energy Energy Efficiency and Renewable Energy

Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable

Ned Stetson and Jesse Adams

