Design of Novel Multi-Component Metal Hydride-Based Mixtures for Hydrogen Storage

C. Wolverton (PI), H. Kung Northwestern Univ.

> V. Ozolins UCLA

J. Yang, M. Veenstra Ford Motor Company

> S. Hwang Caltech

S. Shore Ohio St. Univ.

NORTHWESTERN UNIVERSITY

ST028

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 9/1/08
- Project End Date: 8/31/13 (1 year no-cost extension to 8/31/14)
- ~100% complete

Budget

- Total Project Value: \$2,714,400
- Cost Share: \$554,400
- DOE Share: \$2,160,000
- DOE Funding Spent*: \$2,092,372
- *as of 3/31/14

Barriers

- Barriers addressed
 - O. Lack of Understanding of Hydrogen Physisorption and Chemisorption
 - A. System Weight and Volume
 - E. Charging/Discharging Rates

Partners

- Northwestern University
- UCLA
- Ford Motor Company
- Project lead: Northwestern University

Relevance – Objectives and Approach Our project: Combinations of materials to form novel multicomponent reactions

Hydrogen Storage Measurements and Auto Perspective Yang and Veenstra, Ford; Hwang (NMR), Caltech

Computational Prediction of Novel Reactions Wolverton, NU; Ozolins, UCLA

Kinetics/Catalysis/ Synthesis Experiments Kung, NU Shore, Ohio St.

UCLA

NORTHWESTERN UNIVERSITY

Computational Screening of Reactions – Thermodynamics and Kinetics

- Tools for Computational Prediction of New Materials/Reactions
 - (High-Throughput) Density Functional Theory:
 - Open Quantum Materials Database (OQMD) Wolverton
 - Crystal Structure Prediction:
 - Prototype Electrostatic Ground State (PEGS) Majzoub and Ozolins
 - Prediction of Decomposition Pathways:
 - Grand Canonical Linear Programming (GCLP) Ozolins and Wolverton

Note: None of these tools were developed in the current project. They were either developed previously or in other projects, but utilized/leveraged here.

Computational Screening of Reactions – Thermodynamics and Kinetics

We have used DFT+computational tools to look for reactions in many systems:

- **B-N-H** (Phys. Rev. B **83**, 064112 (2011); **84**, 099902 (2011))
- Li-Mg-N-H (Advanced Materials 19, 3233 (2007))
- Li-Al-N-H (in prep, 2013)
- Li-Mg-Al-H (Phys. Rev. B 79, 184102 (2009))
- **Mg-B-N-H** (in press, 2014)
- **Ca-B-N-H** (Phys. Rev. B **84**, 134103 (2011))
- Li-Zn-B-H, Na-Zn-B-H (Phys. Rev. B 83, 144111 (2011); submitted, 2013)
- Li-Mg-Ca-B-H (J. Amer. Chem. Soc. 131, 230 (2009))
- Li-Mg-B-N-H (unpublished)

Rather than doing this one system at a time... Can we just compute <u>all possible storage reactions</u>, involving all known crystalline phases?

High-Throughput Discovery of <u>All Possible</u> Storage Reactions

Open Quantum Materials Database (OQMD)

- <u>Open</u> An online (oqmd.org), freely available database...
- <u>Quantum</u> ... of self-consistently DFTcalculated properties...
- <u>Materials</u> … for ~30,000 experimentally observed and 250,000 hypothetical structures…
- <u>**Database</u>** ... built on a standard and extensible database framework.</u>

Scan over hundreds of possible alloy systems; For each system, need to compute (quickly) ground state hull of all combinations of known phases at all stoichiometries.

Saal, Kirklin, Aykol, Meredig, and Wolverton "*Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Mechanical Database (OQMD)*", JOM **65**, 1501 (Nov. 2013)

Technical Accomplishments: High-Throughput Discovery of <u>All Possible</u> Thermodynamic Storage Reactions

How many thermodynamically-allowed H₂ storage reactions are there?

• Any compound in the ICSD with elements from

{H, Li, B, N, Na, Mg, Al, Si, K, Ca, Sc, Ti} (and unit cell < 60 atoms)832 total phases considered, 171 contained hydrogen

<u>Total Reactions</u>

4212 reactions (with $\Delta H < 150 \text{ kJ/mol H}_2$)

<u>Reactions w/ good enthalpy</u>

434 reactions with Δ H between 20-40 kJ/mol H₂

<u>Reactions w/ high capacity</u>

108 reactions with > 6 wt. % H_2

43 reactions with > 8 wt. % H2

<u>Reactions w/ good enthalpy and high capacity</u>

22 reactions with Δ H 20-40 kJ/mol H₂, > 6 wt. % 7 reactions with Δ H 20-40 kJ/mol H₂, > 8 wt. %

Technical Accomplishments (previous): Novel, High-Capacity Predicted Reactions

- High-throughput computational screen through all possible high capacity reactions with suitable thermodynamics in Li-Mg-B-N-H quinary.
- We focus on the reactions in bold (grayed out reactions were known previously and have been studied experimentally)

Reactions	Wt.% H ₂	Vol. H ₂ (g H ₂ /L)	ΔΗ ^{300κ} (kJ/mol H ₂)	ΔS ^{300K} (J/mol-K)
$2(NH_4)_2B_{12}H_{12} \rightarrow 4BN + B_{20}H_{16} + 12H_2$	6.81	62	17	104
$5Mg(BH_4)_2 + 2LiBH_4 \rightarrow 5MgH_2 + Li_2B_{12}H_{12} + 13H_2$	8.37	66	24	104
$6Mg(BH_4)_2 \rightarrow 5MgH_2 + MgB_{12}H_{12} + 13H_2$	8.10	65	29	100
$B_{20}H_{16} \rightarrow 20B + 8H_2$	6.95	77	33	111
$5MgH_2 + MgB_{12}H_{12} \rightarrow 6MgB_2 + 11H_2$	7.46	81	44	115

• Combination of 1st and 4th reactions above gives a very high capacity reaction:

 $2(NH_4)_2B_{12}H_{12} \rightarrow 4BN + B_{20}H_{16} + 12H_2 \rightarrow 4BN + 20B + 20H_2$ $17-33 \text{ kJ/mol } H_2$ $11.3 \text{ wt.\% } H_2$ $103 \text{ g } H_2/L$

Technical Accomplishments (previous): Interstitial H₂ flux in B₂₀H₁₆ and mass transport activation energy

kinetics!

Technical Accomplishments: Synthesis of icosaborane-16 (B₂₀H₁₆) (subcontract with S. Shore, OSU)

SYNTHESIS OF B20H16

- Several methods have been reported for the preparation of icosaborane-16 ($B_{20}H_{16}$) but they were carried out under extreme conditions and with low yields 9 to 15%.
 - No commercial source is available.
- The method we used in this project is the modified catalytic pyrolysis of decaborane-14 (B₁₀H₁₄). The reported yields for this procedure range from 10 to 15 % ^[1].

Chemistry of Boranes. XXI Icosaborane-16 : N. E. MILLER, J. A. FORSTNER, E. L. MUETTERTIES, Inorganic Chemistry, **3**,1690(1964)

Technical Accomplishments: Synthesis of icosaborane-16 (B₂₀H₁₆) – (Shore, OSU)

The synthesis of catalyst, methylaminodimethylborane (NHMeBMe,)

¹¹B NMR spectrum of MeHN=BMe₂ in d_8 -toluene ¹H NMR spectrum of MeHN=BMe₂ in d_8 -toluene

- The synthesis of icosaborane-16
- The collection and characterization of icosaborane-16

¹¹B NMR spectrum of icosaborane-16 in CH_2CI_2 (prepared in Dr.Shore's group) (NMR peaks: 10.8, 3.7 , -3.2 , -5.6)

¹¹B NMR 2D spectrum of icosaborane-16^[2] [2]. D.Hnyk, et al, Collect. Czech. Chem. Commun. , Vol.75, No.11, pp. 1115-1123,2010.

Synthesis of icosaborane-16 (B₂₀H₁₆) – (Shore, OSU)

Notes about synthesis

- We obtained 46mg product, which the yield is about 5%.
- Ran out of funds/time before characterization other than NMR could be performed.
- We have employed all of the conditions of experiment described in the published paper on the B20 synthesis but produce yields significantly less than those reported in the literature.
- Possible that the material for the catalyst, which we purchased, is not good, or perhaps problems with the temperature for making the catalyst active as listed in the literature.

Icosaborane-16 (B₂₀H₁₆) – Conclusions and Suggested Future Work

- B₂₀H₁₆ unique and potentially very interesting: <u>Only</u> H₂ storage reaction of known compound with 1) high capacity, 2) good thermodynamics, and 3) predicted fast mass transport kinetics
- Of course, there are drawbacks, but because of this unique combination of characteristics, recommend that more future work on this reaction is warranted.
- Synthesis proved difficult, with low yield.
- Future experimental work should try to validate predicted beneficial attributes of material; if validated, more focused effort should be performed to overcome any potential drawbacks (e.g., low yield synthesis, low-cost synthesis, possible kinetic limitations)

(Previous) Technical Accomplishments: Experimental Testing of Predicted Reactions

What are (non-crystalline) reaction products? Do they inhibit reversibility? (NMR subcontract with S. Hwang, Caltech)

Technical Accomplishments (previous): NMR Experiments of Mixed borohydride system 2LiBH₄+5Mg(BH₄)₂

Solid state NMR characterization upon H₂ desorption reactions

- Multinuclear and high resolution (MAS) solid state NMR experiments
- Samples include the as-milled mixture of 2:5 borohydrides and solid residue after H₂ desorption.
 - ¹H and ¹¹B NMR show decrease of BH_4 (~ -41 ppm peak for both LiBH₄ and Mg(BH₄)₂)
- Desorbed borane species was mainly characterized by a broad -26 ppm peak (see following slides) after thermal heating above 280 C.
 - Note that -26 ppm peak cannot be due to Li₂B₁₂H₁₂ of which resonance is expected at -15 ppm.

What are B-containing reaction products observed in NMR? Computational screen of reaction products in Mg(BH₄)₂ (from 2012)

All $[B_nH_m]$ intermediates have higher reaction energies than MgB₁₂H₁₂. Only the reactions to MgB₂H₆ and Mg₃(B₃H₆)₂ are close to the MgB₁₂H₁₂ convex hull.

Y. Zhang et al., Phys. Rev. B (2010); J. Phys. Chem. C (2012)

Borane species detected by ¹¹B NMR

- Besides the sharp -17.7 ppm and a broad peak at -1 ppm (amorphous boron), the main -26 ppm peak represents the major boron species.
- Possible species for of -26 ppm peak: diborane dianion^{2,3} - Li₂B₂H₆, MgB₂H₆
- -17.7 and -48.6 ppm: $Li_2B_5H_9$ or MgB_5H_9 like³

¹Hermanek, S. *Chemical Reviews* **1992**, *92* (2), 325-362. ²Godfroid, R. A. et al, JACS **1994**, *116* (26), 12107-12108. ³Yan, Y. et al, Mater Trans, **2011**, 52,1443.

shift (ppm)	line width(Hz)		rel Intensity	
-1	.00	2880	0.15	
-17	.66	240	0.02	
-26	.50	2080	0.45	
-42	.45	545.9664	0.17	
-42	.54	109.0432	0.08	
-43	.94	1786.133	0.13	

$2LiBH_4 + 5Mg(BH_4)_2$

- At lower temperatures, a ¹¹B peak at -30.5 ppm appeared (200 °C).
- The peak could possibly be assigned to B₃H₈ formation ². However, its formation was not in significant quantity (see green line in the stack plot), and other sharp peaks at -48.6 ppm and -17.8 ppm were accompanied.
- After heating at 200 °C, the reduction in hydrogen content measured by ¹H NMR was less than 10% (see [H] plot). [H] plot for the new batch showed noticeable difference from the first batch that contains boron oxide in large fraction.
 - Yan, Y et al proposed the following reaction route for B₁₂H₁₂²⁻ formation.
 - Assigning -26 ppm peak for B₂H₆^{2-,} and -17.8 and -48.6 ppm peaks for B₅H₉²⁻, the sequence of products is inconsistent.

H content from ¹H MAS NMR

Fig. 4 Schematic illustration of formation process of $[B_{12}H_{12}]^{2-}$ from $[BH_4]^{-}$.

Hill, T. G.; Godfroid, R. A.; White, J. P.; Shore, S. G., *Inorganic Chemistry* **1991**, *30* (14), 2952-2954. Yan, Y. et al, Mater Trans, **2011**, 52,1443.

Technical Accomplishments: ¹¹B NMR calculations – Using DFT to help interpret NMR experimental data

Collaboration w/ C. Pickard, UCL

DFT-NMR calculations of possible $Mg(BH_4)_2$ decomposition products:

 $\begin{array}{ll} Mg(BH_{4})_{2},\ MgB_{12}H_{12},\ MgB_{2}H_{6},\ Mg(B_{3}H_{8})_{2},\\ Mg_{3}(B_{3}H_{6})_{2} \end{array}$

The theoretically calculated ¹¹B NMR of $[B_{12}H_{12}]$ is in good agreement with the experimental measurements.

From experimental NMR measurements (Cal. Tech.), there has a strong peak around -50 ppm, which is also present in our theoretical $Mg_3(B_3H_6)_2$ NMR calculations. Thus, the agreement is in accord with our previous theoretical prediction of $Mg_3(B_3H_6)_2$ as a possible decomposition product.

The experimental NMR suggested $[B_nH_m]$ region (~-30ppm) needs further investigation (see subsequent slides).

Technical Accomplishments

To clarify role of possible B_3H_8 products, NMR experiments and calculations performed for <u>known</u> pure B_3H_8 compounds, NaB₃H₈ and KB₃H₈. Samples provided by J.C. Zhao and X. Chen, Ohio State

^1H and ^{11}B MAS NMR of MB_3H_8

The center band line shapes of both Na and K version of $B_3H_8^-$ as well as the corresponding ¹H MAS NMR spectra are shown below.

 Both samples show the presence of minor contaminant (~-40 and ~-43 ppm) which are nominally supposed to be BH₄⁻ ion, and their NMR shift positions match with NaBH₄ and KBH₄.

Technical Accomplishments

¹¹B NMR of KB₃H₈

- According to literature¹, while B atoms are stationary below 316 K (phase transition to isotropic phase), but NMR sees all borons equivalent due to an exchange mechanism, and our exp ¹¹B NMR is also showing one B environment and consistent with previous reports.
- C_{q} and η_{q} are in agreement with literature² values (0.96 MHz and 0.76, respectively)
- ¹¹B appears to experience bit more distortion around B coordination (higher C_{0} and η) compared to NaB₃H₈.
- ³⁹K NMR was not attempted since its resonance frequency is too low at our magnet.

Technical Accomplishments: ¹¹B NMR – DFT calculations, collaboration with C. Pickard, UCL

¹¹B NMR reference standard calibration: δ_{ref}

Technical accomplishments: [B₃H₈] ¹¹B NMR: calculations vs. experiments

DFT calculations of B3H8 show two 11B peaks, consistent with the two B environments. But, experimental measurements show only one peak, due to the fast H exchange within the anion group.

Averaging these two DFT peaks are in good agreement with the experimental measurements. Thus $Mg(B_3H_8)_2$ is consistent with observed product at ~30ppm, but only present at low temperatures and in low concentrations.

¹¹B NMR of other possible intermediates

•With the combined NMR experiments and DFT calculations, we can assign now most of the peaks in the observed products.

•The current or Ref[1] measured peak ~-25ppm is still unknown. Even though Ref[1] suggests that the peak belongs to $[B_2H_6]$, our theoretical calculations on $[B_2H_6]$ show a different peak position.

ZnCl₂ assisted Dehydrogenation of 1:1 LiBH₄-Mg(BH₄)₂

Rationale:

- LiZn₂(BH₄)₅ was reported to have very low decomposition temperature,¹ lower than LiBH₄-Mg(BH₄)₂.
- However, decomposition of $LiZn_2(BH_4)_5$ leads to evolution of B_2H_6 .¹

Objective: To investigate the effect of the addition of $ZnCl_2$ or $ZnCl_2$ /carbon mixture on the decomposition of LiBH₄-Mg(BH₄)₂.

Approach:

• Add small quantities of $ZnCl_2$ and to see if B_2H_6 formation is suppressed.

 B_2H_6 is formed by the following reaction: 10LiBH₄+ 5ZnCl₂ =5Zn+ 10 LiCl+5B₂H₆+5H₂ Corresponding reaction between Mg(BH₄)₂ and ZnCl₂ has not been reported..

Suppression of B_2H_6 formation will be indicated by larger quantity of low temperature H_2 release than that shown by the equation above.

• Explore whether carbon can also suppress B₂H₆ formation. Test 2 different types of carbon: carbon molecular sieve (Y-carbon) and graphitic carbon nitride (Carbodeon Corporation)

1. Ravnsbæk et.al. Angew. Chem. Int. Ed. 2009, 48, 6659 –6663.

Results: $ZnCl_2$ addition increased H₂ release at low temperatures from LiBH₄- Mg(BH₄)₂ mixed hydrides. Comparing curves b, c, and d: more H₂ released with more ZnCl₂.

Results: Evidence that indicates little or no B_2H_6 formation.

Total amount of gas released at low temperature (up to 185 °C) is much higher than that corresponding to formation of B_2H_6 and H_2 according to reaction A. It is consistent with reaction B.

A: 10LiBH_4 + 5ZnCl_2 =5Zn+10LiCl+ $5\text{B}_2\text{H}_6$ + 5H_2 (1 mole of B_2H_6 is treated as 1 mole of H_2) B: 10LiBH_4 + 4ZnCl_2 =20 H₂ +Zn and boron and Li decomposition products

Result: addition of carbon to $ZnCl_2$ further improved low temperature H_2 released from LiBH₄- Mg(BH₄)₂

 What are the ratelimiting steps for MgB₂ ? (mass transport, nucleation, dissociation, diffusion, or others?)

2.0

We investigated the H₂ dissociation and H diffusion on the Mgterminated MgB₂ (0001) surface

We studied the interstitial H diffusion in bulk MgB₂

KMC calculations results: (migration energy)

- D_x = D_y = 0.22 eV
- $D_z = 0.38 \text{ eV}$

x, y plane: parallel Mg, B layers z direction: perpendicular B layers

Low barriers for H diffusion in the bulk of MgB₂

Processes

2LiBH₄+5Mg(BH₄)₂ – Conclusions and Suggested Future Work

- DFT discovery of this reaction as high capacity, and thermodynamically reversible; However, like most borohydrides, mass transport is a significant kinetic limitation to reversibility.
- <u>Kinetics</u> of high-capacity borohydride reactions almost always limiting factor - <u>thermodynamic</u> problems solved by appropriate combinations, i.e., 2LiBH₄+5Mg(BH₄)₂
- Measurements suggest that the $2\text{LiBH}_4+5\text{Mg}(\text{BH}_4)_2$ reaction is at least partially reversible.
- Computations also suggest some strategies to reduce kinetic barriers for the hydrogenation of MgB₂.
- NMR experiments of 2LiBH₄+5Mg(BH₄)₂ show a number of intermediates or decomposition products. Many of these were identified via a combination of experiment and DFT calculations of NMR spectra.
- Future work on this system should be focused on: 1) more clearly defining the reversible (and kinetically-limited) portions of the reaction, 2) finding a suitable catalyst to overcome kinetic limitations.

Technical Accomplishments: New Theoretical Predictions

- <u>Kinetics</u> of high-capacity borohydride reactions almost always limiting factor - <u>thermodynamic</u> problems solved by appropriate combinations, i.e., 2LiBH₄+5Mg(BH₄)₂
- All computational efforts now focused on calculations of kinetic barriers (diffusion, mass transport, surface dissociation, etc.)
- Diffusion & mass transport (required for fast kinetics)
 ➢ Mass transport in LiBH₄
 ➢ Al diffusion in B₂₀H₁₆
- H₂ kinetic studies on MgB₂(0001) surfaces and bulk (see subsequent slides): dissociation and diffusion

Collaborations

Pl's/co-Pl's

Chris Wolverton (Northwestern, lead) Harold Kung (Northwestern) Vidvuds Ozolins (UCLA) Mike Veenstra (Ford, no-cost) Jun Yang (Ford, no-cost) S. G. Shore (OSU, subcontract) S. Hwang (Caltech, subcontract)

Outside Collaborators:

D. Siegel (U. Michigan) E. Majzoub (UMSL) G. Ceder, N. Marzari (MIT) C. Brown (NIST) T. Burrell (LANL) T. Autrey (PNNL) F.-C. Chuang (Nat'l Sun Yat-Sen U) J. C. Zhao (OSU)

NORTHWESTERN UNIVERSITY

Summary – Technical Accomplishments

- Used computational tools and high-throughput machinery to survey high capacity, thermodynamically-reversible reactions.
- Focused efforts on two main reactions, predicted to have high capacity and suitable thermodynamics for H2 storage applications, 2LiBH₄ + 5Mg(BH₄)₂ and B₂₀H₁₆.
- B₂₀H₁₆ extremely promising *first known H2 storage reaction with high capacity, good thermodynamics, and computational predicted fast mass transport kinetics!*
- Theoretically predicted that mass transport in B₂₀H₁₆ is fast. Subcontract at OSU focused on synthesis of B₂₀H₁₆ compound (synthesis and NMR characterization performed; project ran out of time/funds before full desorption, kinetics, and reaction products could be performed)
- H₂ desorption and decomposition pathways have been studied in [2LiBH₄ + 5Mg(BH₄)₂] using NMR; reaction products consistent with theoretically predicted B₂H₆ anion. Using combination of experiments and DFT, able to assign almost all reaction products. Still one uncertain product (~-25ppm).
- Computational survey of dopants that lower surface dissociation or diffusion for MgB₂ rehydrogenation
- Addition of ZnCl2 (and carbon) to LiBH4+Mg(BH4)2 mixture results in (slight) increase in hydrogen desorption at lower temperatures