Aluminum Hydride: the organometallic approach

<u>J. Wegrzyn,</u> Chengbao Ni, and W.M. Zhou Brookhaven National Laboratory 06/18/2014

Project ID # ST 034

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: FY10
- Project end date: FY14

Budget

- FY13 DOE Funding: \$150K
- FY14 DOE Funding: \$50K
- Total Project Value: \$750K

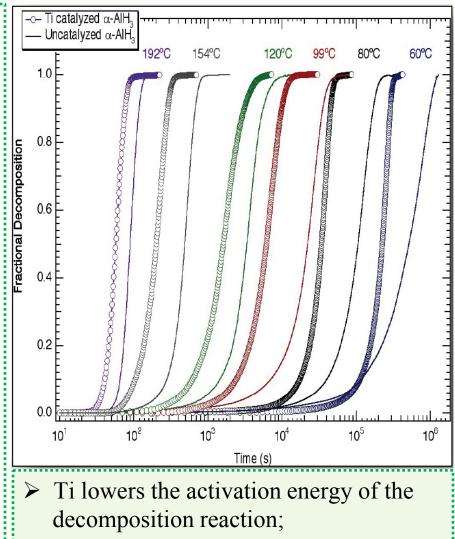
Barriers

MYPP Section 3.3.4.2.1 Hydrogen Storage Barriers:

- A: Weight & Volume
- B: Cost
- C: Efficiency
- D: Durability/Operability
- E: Charge/Discharge Rates

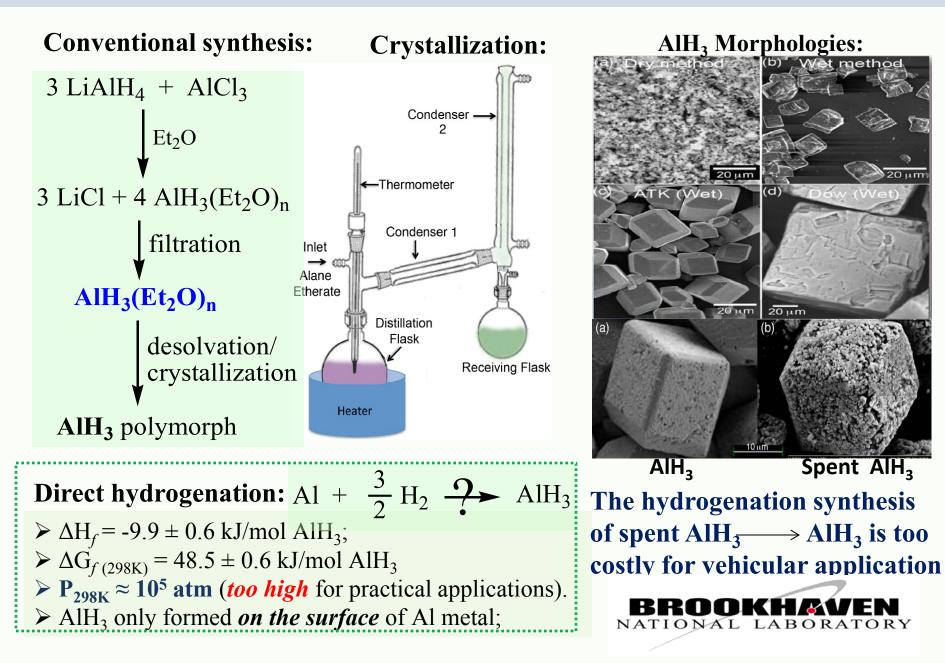
Target

Material development for meeting the packaging, safety, cost and DOE performance targets for delivering hydrogen to the PEM fuel cell for portable power.



Aluminum hydride (alane, AlH₃):

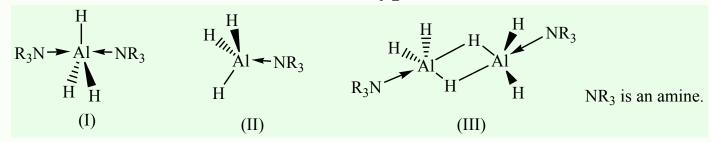
$$AlH_3 \longrightarrow Al + \frac{3}{2} H_2$$


- → High capacity: **10.1 wt%** and **1.48 g/L**;
- Low decomposition enthalpy: ΔH ≈ 7 kJ/mol H₂ (≈ 1/5 ΔH_{NaAlH4})
- Rapid H₂ evolution rates at low T: meets DOE target (0.02 gH₂/s) at < 100°C</p>
- High purity H₂: no side reaction for the decomposition reaction
- Decomposition rates can be tuned by: temperature, catalyst & surface coatings

➢ AlH₃ is completely unstable at Ti concentrations ≥ 0.1 mol%.

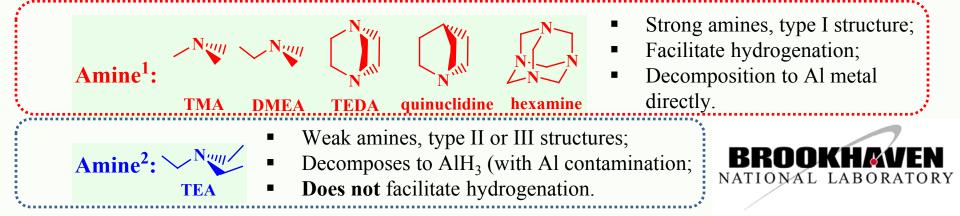
Conventional Synthesis of AlH₃:

Alane Synthesis by Crystalline Growth Method


Alane-Etherate: $AlCl_3 + 3LiAlH_4$: $Et_2O \rightarrow 4AlH_3$: $Et_2O + 3LiCl$ Crystal Growth & Ether Separation: AlH_3 : $Et_2O + Toluene \rightarrow \alpha - AlH_3 + Et_2O^{\uparrow}$ Alane-Amine: AlH_3 : $Et_2O + Amine \rightarrow AlH_3$: Amine + Et_2O^{\uparrow} Crystal Growth & Alane Separation: AlH_3 : Amine + Toluene $\rightarrow \alpha - AlH_3 + Amine^{\uparrow}$

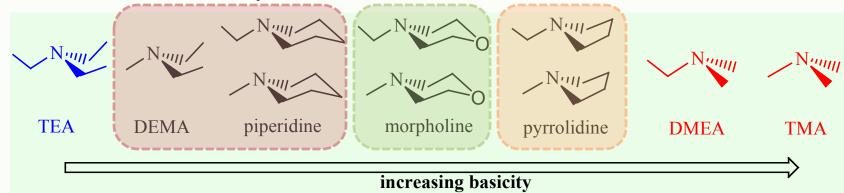
The organometallic previous approach:

Common amine alane structural types:


> The 3-step regeneration process:

Hydrogenation: Al + 2 amine¹ +
$$\frac{3}{2}$$
 H₂ $\xrightarrow{\text{catalyst}}$ (amine¹)₂·AlH₃ (1)

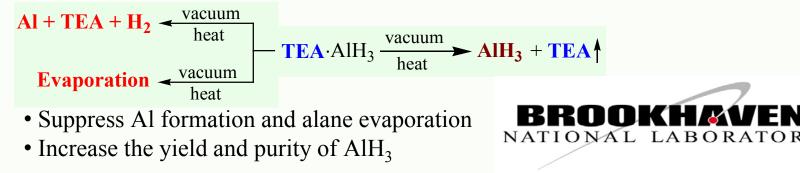
Transamination: $(amine^1)_2 \cdot AlH_3 + amine^2 \frac{vacuum}{heat} \rightarrow amine^2 \cdot AlH_3 + 2 amine^1$ (2)


Decomposition:
$$\operatorname{amine}^2 \operatorname{AlH}_3 \xrightarrow{\operatorname{vacuum}} \operatorname{AlH}_3 + \operatorname{amine}^2$$
 (3)

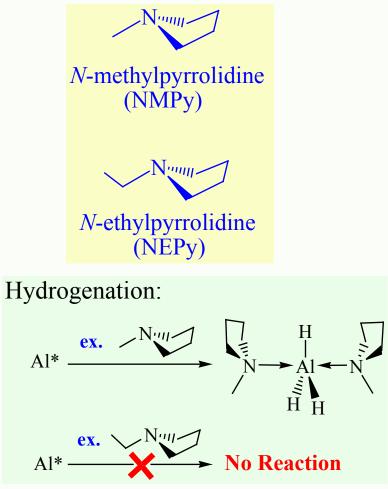
> The "Paradox" and challenges:

Recent approaches to the project:

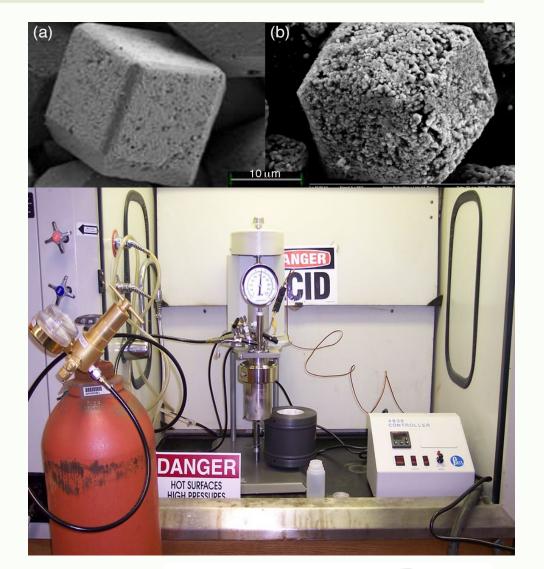
> Tune the Lewis Basicity of amines:



> Objectives:

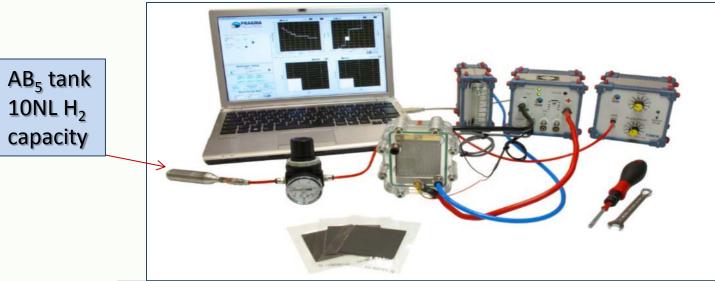

1. Search for an amine that facilitate both hydrogenation and decomposition:

Al + 2 amine¹ +
$$\frac{3}{2}$$
 H₂ $\xrightarrow{\text{catalyst}}$ (amine¹)₂·AlH₃ $\xrightarrow{\text{vacuum}}$ AlH₃ + 2 amine¹


- Reduce energy input and chemical costs
- Increase the efficiency of the process
- 2. Optimize the transamination and thermal decomposition steps:

Synthesis of alane adducts from spent Aluminum:

- Reactor set-up:
- H_2 pressure: ~ 1000 psi;
- Temperature: $0 \sim 25 \text{ °C}$;
- Chemicals: Et₂O (80 mL) & amine (20 mL);
- Al*: Ti doped Al metal, ~ 2.0 g.



<u>Change in Scope of Work</u> from Onboard Hydrogen Storage to AlH₃ Replacing Battery and Metal Hydride for Portable Power

Portable Power Systems and the energy benefits of AlH₃/fuel cell

	Energy	Specific Energy	Energy Density
	Source	(Wh/kg)	(Wh/L)
?	AlH ₃ /fuel cell	840	568
1	Li polymer	150	100
l	Ni-Metal	65	150
	hydride		
	Ni-Cd	80	45
	Pb-acid	30	70

PRAGMA Industries 7 Watt Fuel Cell Pack with electronic load, control software and AB₅ metal hydride

FY 2014 Accomplishments

Benefits in AlH₃ synthesis of replacing toluene solvent with diphenyl-methane Benefits in AlH₃ synthesis of replacing diethyl ether solvent with methyl-THF

Future Work

Demonstration test showing that an ambient temperature 10 g AlH₃ storage system operates a 7 Watt PEMFC for 90 minutes

Costs Targets

Near term goal: AIH_3 synthesis from LiH for meeting \$300/kg cost target Stretch goal: AIH_3 synthesis from H_2 and Al for target cost less than \$100/kg

