2014 DOE Hydrogen and Fuel Cells Program Review

Hydrogen Storage in Metal-Organic Frameworks

P. I. Jeffrey Long

Lawrence Berkeley Nat. Lab., Univ. of California Berkeley Nat. Inst. of Standards and Technology, General Motors Co. June 17, 2014

Project ID #: ST103

This presentation does not contain any proprietary, confidential, or otherwise restricted information

+

Overview

Timeline

- Start: April 2012
- Finish: March 2015

Budget

- FY13 DOE Funding:
 - \$600k
- Planned FY14 DOE Funding:
 - \$700k
- Total project funding
 - Total Project Value: \$2,625k
 - Cost Share: \$525K
 - DOE Share: \$2,100K
 - DOE Funding Spent*: \$1,533K
 *as of 3/31/14

Barriers

- Barrier addressed
 - A. System Weight and Volume

Partners

- LBNL: synthesis and modeling
- NIST: neutron diffraction (start Oct. 2012)
- GM: high-pressure adsorption (start July 2012)
- Project lead: Jeffrey Long (LBNL)

2

GM

Relevance

Project objectives

- Research and development of on-board systems that allow for a driving range greater than 300 miles.
- Materials sought with the potential for meeting the DOE targets of reversible uptake:
 - 2017 targets: 5.5 % H_2 by mass, volumetric capacity of 40 g/L
 - "ultimate full fleet" targets: 7.5 % H₂ by mass, 70 g/L.
- Synthesize new metal-organic frameworks capable of achieving the -15 to -20 kJ/mol adsorption enthalpy required for use as hydrogen storage materials operating under 100 bar at ambient temperatures

3

Approach

Task 1: Synthesis of Metal-Organic Frameworks(Jeffrey Long-LBNL)

Task 2: Characterization of Framework-H₂ Interactions (Craig Brown-NIST)

Task 3: First-Principles Calculations of Hydrogen Binding Enthalpies (Martin Head-Gordon-LBNL)

Task 4: High-Pressure H₂ Adsorption Measurements (Anne Dailly-GM)

Approach Multiple H₂ Binding Sites per Metal

 \square Create MOFs with exposed M²⁺ or M³⁺ cations, each binding 4 or 5 H₂ molecules

□ Hypothetical MOF can meet capacity targets, depending on Mg²⁺ binding enthalpy

Approach: Milestones Tasks 1&2

Due date	Description		Status April 2014	
03/14	Task 1 (G/N): Synthesis of MOFs with reversible excess H ₂ uptake > 2.5 wt %	100%	MOF-74 analogues synthesized which may surpass 2.5 wt %	
03/14	Task 1 : Preparation of a high-valent MOF with an initial H ₂ adsorption enthalpy greater than 12 kJ/mol	100%	Ni ₂ (<i>m</i> -dobdc) displays H ₂ binding enthalpy of -12.3 kJ/mol	
03/14	Task 1: Synthesis of MOFs with the ligands prepared in year 1	100%	3 bipyridine-MOFs synthesized	
03/14	Task 1: Demonstration of the post-synthetic insertion of metals into the open chelate sites of these new materials	100%	Single crystal diffractions shows binding of M ²⁺ to the bipy sites	
03/14	Task 1: Preparation of at least 2 MOFs with the optimal 7 Å between opposing pore surfaces as predicted with <i>in silico</i> screening	100%	3 dicarboxylate MOFs synthesized with optimal pore size	
03/15	Task 1: Demonstration of a MOF with an initial H ₂ adsorption enthalpy greater than the current record of 15.1 kJ/mol	40%	On-track	
03/15	Task 1 (G/N): Synthesis of a metal-organic framework with reversible hydrogen uptake greater than 4.5 wt % at 298 K	30%	On-track	
03/14	Task 2: Demonstrate that understanding of MOF-H ₂ interactions	90%	INS meas. on H ₂ in MOF-74	
	through inelastic neutron scattering experiments provide new insight	0070	variants; waiting for new materials	
03/15	Task 2: Demonstrate the use of quasielastic neutron scattering to help understand the roles of diffusion and entropy in H ₂ binding to MOFs	50%	Experiments underway; analysis underway	

6

Approach: Milestones Tasks 3&4

Due date	Description		Status April 2014	
12/14	Task 3: Demonstrate the ability to determine H ₂ -metal interactions in realistic systems containing low-coordinate metal cations	25%	Calculation performed for catechol and bipyridine systems	
03/15	Task 3: Pre-screen optimal MOF targets by identification of systems that produce an H ₂ binding enthalpy > 20 kJ/mol	12%	Preliminary results indicate a number of potential targets	
03/14	Task 4: Demonstration of a correlation between high-pressuremeasurements and theoretical and spectroscopic predictions	100%	Correlation demonstrated for several MOF-74 variants	
06/14	Task 4: Demonstrate the ability to measure H ₂ adsorption in a test material up to 10 cycles at 298 K	25%	On-track	
09/14	Task 4: Demonstrate the ability to measure H ₂ adsorption in a test material up to 10 cycles at t° relevant to onboard vehicle applications	10%	On-track	
12/14	Task 4: Down select 1 or 2 samples for 100 cycles measurement	0%	Not started	
03/15	Task 4: Demonstrate the ability to measure high-pressure H ₂ adsorption in MOFs up to 100 cycles at temperatures relevant to use in onboard vehicle applications	0%	Not started	

7

Accomplishments: Task 1 Synthesis of Zr₆O₄(OH)₄(bpydc)₆ (UiO-67-bipy)

- □ Single crystal X-ray diffraction unambiguously confirms metal insertion
- □ Gas adsorption experiments are ongoing

Accomplishments: Task 1 Synthesis of Charge Balancing UiO-67-bipy Analog

- \square Phenol group provides charge balance and access to multiple H₂/M²⁺
- Robust framework is expected to accommodate high activation temperatures required for full desolvation of Ni²⁺ sites

Accomplishments: Task 1 Synthesis and Characterization of M₂(*m*-dobdc)

- Cheaper ligand via direct carboxylation of resorcinol
- Symmetry change of ligand is expected to impact H₂ adsorption properties

Accomplishments: Task 1 Synthesis and Characterization of M₂(*m*-dobdc)

GM

....

 High crystallinity enabled structure determination via powder x-ray diffraction

 $\Box M_2(m-dobdc) \text{ features} \\ comparable surface \\ area to M_2(dobdc) \\ \end{bmatrix}$

M₂(*m*-dobdc) displays
 increased isosteric
 heat of H₂ adsorption

1 U.S. DEPARTMENT OF ENERGY

Accomplishments: Task 1 Synthesis of New Charge Balancing Ligands

These new ligands have all been synthesized and applied in MOF formation
 The resulting MOFs will be metallated to give M²⁺ cations with 4 open sites

Accomplishments: Task 1 Protecting Group Strategy

□ Protecting groups needed to block chelate sites during synthesis

□ Bulky protecting groups may be used to control interpenetration

Accomplishments: Task 1 High-Pressure Adsorption in MOF-74 Analogues

□ Co₂(dotpdc) reaches 2.5 wt % at 298 K and 140 bar

□ Mg₂(dotpdc) is expected to reach 2.5 wt % by 100 bar

Accomplishments: Task 2 Neutron Powder Diffraction: D₂ in Co(*m*-dobdc)

Accomplishments: Task 2 Neutron Powder Diffraction: D₂ vs H₂

First structure for H_2 adsorbed in a MOF Typically D_2 is used due to much lower inelastic scattering cross section

Low loading (0.5 per metal) binding sites are the same with slight distance difference $Co-D_2 = 2.23(5) \text{ Å}$ $Co-H_2 = 2.27(3) \text{ Å}$

DEPARTMENT OF

16

Accomplishments: Task 2 Neutron Powder Diffraction: High Pressure D₂ Adsorption

- Difference Fourier map obtained from pattern of 90 bar D₂ in Zn(dobdc) at 77 K
- Attempting to image hydrogen density in pore at relevant pressures and temps
- Maximum-Entropy data interpretation and measurements are ongoing

Accomplishments: Task 2 Inelastic Neutron Scattering Data for M₂(*m*-dobdc)

• Rotational barrier at first adsorption site indicates that the *m*-dobdc materials have similar characteristics compared to dobdc materials

ARTMENT OF

Energy Efficiency &

Renewable Energy

- Local adsorption potential is weaker with further filling
- Correlates with diffraction and isotherm data
- Q-dependence indicates an almost ideal H-H molecule adsorbed at the metal

18

Accomplishments: Task 3 Calculation of Ligand-H₂ Interactions

- □ Nonnegligible charge transfer between bare ligand/H₂
- To maximize H₂ adsorption enthalpy both metal-H₂ and ligand-H₂ interactions must be considered

Accomplishments: Task 3 Calculation of H₂ Binding Enthalpies

Calculated average H₂ binding enthalpies for free Mg- and Ca-catechols indicate 15-20 kJ/mol are attainable

 \Box Although metals coordinated to bipyridine have two open coordination sites the predicted H₂ binding enthalpy is low

Accomplishments: Task 4 High Pressure H₂ Adsorption System

System Specifications

- Max operating pressure: 344 bar
- Thermoelectric temperature control
- Large sample capacity (~500 mg)

Vacuum Vent T2 Gas Reservoir (P1 P5 ample Holder Booster Pump Legend Manua Manual Vent Regulator Valve (P8) Hydrogen Helium Pneumatic Pressure (P1 Valve Transducer Pneumatic T-Type T1 Regulator Thermocouple

Challenges of 350 bar H₂ measurements

- Careful system calibration
- 0.05 cm³ reference volume error results in 0.5 mmol deviation at 350 bar
- 0.5 g of MSC-30 adsorbs ~3 mmol H₂ at 350 bar and 298 K

Accomplishments: Task 4 Evaluation of Materials

Adsorption Enthalpy from One Isotherm

- Apply van't Hoff formula directly to the Dubinin-Astakhov model
- Empirical temperature independent constants are used
- Results for benchmark materials are consistent with expectations

Am. J. Analytical Chem. 2013, 4, 8-16.

Accomplishments: Task 4 Evaluation of New Materials

□ Expanded MOF-74 analogues feature increased gravimetric H_2 uptake □ M_2 (dotpdc) frameworks reach 2.5 wt. % total at 298 K, 140 bar

Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

- As specified on Slide 3, our focus is on the creation of materials that can help meet the 2017 system capacity targets of 5.5% H₂ by mass, volumetric capacity of 40 g/L
- We have in fact collected H₂ uptake at both low and high pressures and various temperatures for dozens of new MOFs, but these results were summarized rather showing the isotherms owing to presentation time restrictions. A few selected data sets are now depicted Technical Back-Up Slides 31-34.
- Our overall strategy, as summarized on Slide 5, is to create materials with a highdensity of open M²⁺ or M³⁺ cation sites, each capable of binding 4 or 5 H₂ molecules. This is the only viable route we see to meeting the volumetric capacity target of 40 g/L in a MOF.
- Our roadmap to accomplishing this involves the synthesis of thermally robust MOFs containing anionic chelating sites that can then be metallated and fully activated.
- We agree that the very high-pressure measurement system at GM is unnecessary if we achieve our goals. However, the instrument has already been installed and it enables validation and extension of the high-pressure data collected at Berkeley.

Collaborations

Project team within DOE Fuel Cell Technologies Office:

- Lawrence Berkeley National Laboratory (prime, National Lab.)/UC Berkeley:
 - Jeffrey Long: Synthesis and basic characterization of MOFs
 - Martin Head-Gordon: Calculation and prediction of H₂ binding energies
- National Institute of Standards and Technology (sub, National Lab.):
 - Craig Brown: Neutron diffraction and neutron spectroscopy
- General Motors Company (sub, Industry):
 - Anne Dailly: Measurement of high-pressure H₂ uptake capacity

Additional collaborations:

- Variable-temperature infrared spectroscopy with in situ H₂ dosing
 - Silvia Bordiga (University of Turin), Stephen FitzGerald (Oberlin College)
- Synthesis and metallation of porphyrin-containing MOFs
 - T. David Harris (Northwestern University)

Remaining Challenges and Barriers

- Charge balancing ligands have been realized, however, optimal metallation and activation procedures need to be discovered.
- Correlation between OSAD program selected materials and experimentally promising frameworks needs to be realized.
- Gravimetric storage capacity targets have been achieved at pressures higher than 100 bar and/or temperatures below 298 K. New Mg²⁺ based materials should address these issues.
- While theoretical predictions have suggested optimal metallation targets, experimental realization must be achieved to confirm theoretical results.

Proposed Future Work

Task 1: Synthesis of Metal-Organic Frameworks

- Determine optimal metal-insertion and activation conditions for pyridine/phenol ligand
- Scale up synthesis of catechol containing MOFs and insert metal cations
- Complete synthesis of expanded MOF-74 analogues with Mg²⁺
- Continue synthesis of catechol based ligands for metal insertion.
- Task 2: Characterization of Framework-H₂ Interactions
 - Solve structure of Zr₆O₄(OH)₄(bpydc)₆(PdCl₂)₆
 - Complete neutron powder diffraction experiments on this material as 2 H₂ molecules per Pd²⁺ should be possible
 - Continue inelastic neutron scattering experiments
 - Perform quasielastic neutron diffraction experiments to study diffusion and entropy effects on H₂ adsorption

Proposed Future Work

Task 3: First-Principles Calculations of Hydrogen Binding Enthalpies

- Explore H₂-Metal interactions in real systems that have been realized experimentally
- Determine optimal metallation conditions for charge balancing ligands, investigating solvation effects solvent binding enthalpies.
- Pre-screen optimal targets to identify potential H₂ binding sites greater than 20 kJ/mol.

Task 4: High-Pressure H₂ Adsorption Measurements

- Measure high-pressure H₂ adsorption on samples up to 10 cycles.
- Down select 1-2 materials for 100 adsorption/desorption cycles.
- Test high performing MOFs for 100 cycles up to 350 bar

Summary

- Expanded MOF-74 analogues have achieved 2.5 wt.% total adsorption at 140 bar
- A new mixed pyridine/phenol ligand has been incorporated into a zirconium based framework and has been shown to bind divalent metals.
- Four MOF-74 isomers have been synthesized and characterized and show increased H₂ binding enthalpies.
- Neutron diffraction experiments have been performed using H₂.
- Theoretical calculations have been used to predict metallation targets.
- High-pressure isotherms have been used to calculate H₂ binding enthalpies up to 320 bar.

Capacity	2012	2013	2014	2017*	Ultimate*	*DOF targets
Gravimetric	0.016 kg H ₂ /kg adsorbent	0.016 kg H ₂ /kg adsorbent	0.022 kg H ₂ /kg adsorbent	0.055 kg H ₂ /kg system	0.075 kg H ₂ /kg system	
Volumetric	0.011 kg H ₂ /L adsorbent	0.011 kg H ₂ /L adsorbent	0.011 kg H ₂ /L adsorbent	0.040 kg H ₂ /L system	0.070 kg H ₂ /L system	

Technical Back-Up Slides +

Adsorption Isotherms $M_2(m-dobdc)$

Although –Q_{st} follows Ni > Co > Fe > Mn, saturation capacity at 77 K and 1.2 bar doesn't follow the trend as surface area factors into total uptake

Adsorption Isotherms

□ Adsorption isotherms for $Ni_2(m$ -dobdc) are steeper than the *para* isomer, indicating a stronger M-H₂ interaction.

Adsorption Isotherms M₂(dobdc) vs. M₂(dobpdc)

Given the larger density of coordinatively-unsaturated metal sites, M₂(dobdc) displays higher H₂ capacity at 1.2 bar and 77 K.

Adsorption Isotherms M₂(dobdc) vs. M₂(dobpdc)

At high pressure, M₂(dobpdc) significantly outperforms M₂(dobdc) and offers a significant improvement over compressed H₂.

Optimum Pore Sizes for Hydrogen Storage

□ Calculated using Monte Carlo simulations with both cylindrical and slit pores

Rzepka, Lamp, de la Casa-Lillo J. Phys. Chem. B 1998, 102, 10894

Geometric Calculation of Opposing Wall Distances

- Probe is inserted on the pore surface, and moved away in a direction normal to the surface until it collides with the opposing wall
- This is repeated until the entire pore surface has been traversed by the algorithm to create a distribution of opposing wall distances

Opposing Surface Area Distribution (OSAD)

High-Pressure H₂ Adsorption

□ Mg₂(dobpdc) achieves 2.5 wt. % target at 273 K, 100 bar.

