Introduction

The fiscal year (FY) 2015 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program (the Program) Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office Annual Merit Review, was held June 8-12, 2015, at the Crystal Gateway Marriott and Crystal City Marriott in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE). Projects supported by other DOE offices (including the Office of Science [Basic Energy Sciences] and Advanced Research Projects Agency – Energy [ARPA-E]) in areas relevant to hydrogen and fuel cells were also presented at the FY 2015 AMR. DOE uses the results of this merit review and peer evaluation, along with additional review processes, to make funding decisions for upcoming fiscal years and help guide ongoing performance improvements to existing projects.

The objectives of this meeting include the following:

- Review and evaluate FY 2015 accomplishments and FY 2016 plans for DOE laboratory programs; industry/university cooperative agreements; and related research, development, and demonstration (RD&D) efforts.
- Provide an opportunity for stakeholders and participants (e.g., fuel cell manufacturers, component developers, and others) to provide input to help shape the DOE-sponsored RD&D program in order to address the highest-priority technical barriers and facilitate technology transfer.
- Foster interactions among the national laboratories, industry, and universities conducting RD&D.

The peer review process followed the guidelines in the *Peer Review Guide* developed by EERE. The peer review panel members, listed in Table 1, provided comments about the projects presented. Panel members included experts from a variety of backgrounds related to hydrogen and fuel cells, and they represented national laboratories; universities; various government agencies; and manufacturers of hydrogen production, storage, delivery, and fuel cell technologies. Each reviewer was screened for conflicts of interest as prescribed by the *Peer Review Guide*. A complete list of the meeting participants is presented as Appendix A.

No. Name **Organization** Abdel-Baset, Tarek Fiat Chrysler Automobiles 1 2 Brookhaven National Laboratory Adzic, Radoslav 3 Afzal, Kareem PDC Machines, Inc. 4 Ahmed, Shabbir Argonne National Laboratory Ainscough, Chris 5 National Renewable Energy Laboratory Antoni, Laurent CEA (Alternative Energies and Atomic Energy Commission 6 [France]) University of California, Irvine 7 Ardo, Shane Pacific Northwest National Laboratory 8 Autrey, Thomas 9 Ayers, Katherine Proton OnSite 10 Balema, Viktor Sigma-Aldrich Barbosa, Nicholas National Institute of Standards and Technology 11 12 Barilo, Nick Pacific Northwest National Laboratory U.S. Navy, Naval Research Laboratory 13 Baturina, Olga 14 Benjamin, Thomas Argonne National Laboratory Boillot, Lionel European Commission, Fuel Cells and Hydrogen Joint 15 Undertaking Bonhoff, Klaus NOW GmbH 16 Bonner, Brian Air Products and Chemicals, Inc. 17 Bordeaux International Energy Consulting LLC 18 Bordeaux, Christopher 19 Borup, Rod Los Alamos National Laboratory 20 Bouwkamp, Nico California Fuel Cell Partnership Pacific Northwest National Laboratory 21 Bowden, Mark 22 Bowerson, Dan Fiat Chrysler Automobiles

Table 1: Peer Review Panel Members

No.	Name	Organization				
23	Bowman, Robert	Oak Ridge National Laboratory				
24	Boyd, Robert	Boyd Hydrogen LLC				
25	Brandon, Erik	National Aeronautics and Space Administration, Jet Propulsion				
23		Laboratory				
26	Brown, Craig	National Institute of Standards and Technology				
27	Bunnelle, Eric	Exxon Mobil Corporation				
28	Burgunder, Albert	Praxair, Inc.				
29	Cai, Mei	General Motors				
30	Cairns, Julie	CSA Group				
31	Centeck, Kevin	U.S. Army, TARDEC (Tank Automotive Research,				
		Development and Engineering Center)				
32	Chapman, Bryan	Exxon Mobil Corporation				
33	Choudhury, Biswajit	DuPont Fuel Cells				
34	Collins, William	Consultant				
35	Contini, Vince	Battelle				
36	Cullen, David	Oak Ridge National Laboratory				
37	Curry-Nkansah, Maria	Argonne National Laboratory				
38	Dale, Nilesh	Nissan Technical Center North America, Inc.				
39	Dillich, Sara	U.S. Department of Energy				
40	Dinh, Huyen	National Renewable Energy Laboratory				
41	Dixon, David	University of Alabama				
42	Dornheim, Martin	Helmholtz-Zentrum Geesthacht				
43	Eckerle, Tyson Eisman, Glenn	State of California				
45	Erlebacher, Jonah	Rensselaer Polytechnic Institute				
46	Esposito, Dan	Johns Hopkins University				
47	Eudy, Leslie	Columbia University National Renewable Energy Laboratory				
48	Ewan, Mitch	University of Hawaii, Manoa				
49	Fenske, George	Argonne National Laboratory				
50	Fisher, Allison	Cella Energy US				
51	Fritz, Katrina	KM Fritz LLC				
52	Ganesan, Prabhu	University of South Carolina				
53	Garzon, Fernando	University of New Mexico				
54	Gennett, Thomas	National Renewable Energy Laboratory				
55	George, Paul	Battelle				
56	Gervasio, Don	University of Arizona				
57	Gittleman, Craig	General Motors				
58	Graetz, Jason	HRL Laboratories				
59	Grassilli, Leo	Consultant				
60	Greene, David	University of Tennessee, Knoxville				
61	Gross, Tom	Energy Planning and Solutions				
62	Grot, Stephen	Ion Power				
63	Gupta, Ram	Virginia Commonwealth University				
64	Haight, Andrea	Composite Technology Development, Inc.				
65	Halevi, Barr	Pajarito Powder LLC				
66	Hall, Karen	Fuel Cell and Hydrogen Energy Association				
67	Hamdan, Monjid	Giner, Inc.				
68	Hamilton, Jennifer	California Fuel Cell Partnership				
69	Hanlin, Jason	Center for Transportation and the Environment				
70	Hardis, Jonathan	National Institute of Standards and Technology				
71	Harris, Aaron	Air Liquide Advanced Technologies US				
72	Hartman, Brent	CSA Group				

No.	Name	Organization				
73	Harvey, David	Ballard Power Systems				
74	Hennessey, Barbara	U.S. Department of Transportation				
75	Herring, Andy	Colorado School of Mines				
76	Hirano, Shinichi	Ford Motor Company				
77	Holladay, Jamie	Pacific Northwest National Laboratory				
78	Hua, Thanh	Argonne National Laboratory				
79	Huang, Xinyu	University of South Carolina				
80	Jacobson, David	National Institute of Standards and Technology				
81	James, Brian	Strategic Analysis, Inc.				
82	Jaramillo, Thomas	Stanford University				
83	Jensen, Craig	University of Hawaii, Honolulu				
84	Jensen, Torben Rene	Aarhus University				
85	Jerram, Lisa	Navigant				
86	Keller, Jay	Consultant				
87	Khalil, Y. (John)	United Technologies Research Center				
88	Kienitz, Brian	Consultant				
89	Klebanoff, Lennie	Sandia National Laboratories				
90	Knights, Shanna	Ballard Power Systems				
91	Kocha, Shyam	National Renewable Energy Laboratory				
92	Kongkanand, Anusorn	General Motors				
93	Kopasz, John	Argonne National Laboratory				
94	Krause, Theodore	Argonne National Laboratory				
95	Kreller, Cortney	Los Alamos National Laboratory				
96	Kurtz, Jennifer	National Renewable Energy Laboratory				
97	Lakshmanan, Balsu	General Motors				
98	Levy, Michael	Aaqius				
99	Liu, Di-Jia	Argonne National Laboratory				
100	Ludlow, Daryl	Ludlow Electrochemical Hardware				
101	Lymperopoulos,	European Commission, Fuel Cells and Hydrogen Joint				
101	Nikolaos (Nikos)	Undertaking				
102	Markovic, Nenad	Argonne National Laboratory				
103	Martinez, Andrew	California Air Resources Board				
104	Masten, David	General Motors				
105	McDonald, Rob	Energetics Incorporated				
106	McWhorter, Scott	Savannah River National Laboratory				
	Melaina, Marc	National Renewable Energy Laboratory				
108	Mergel, Jurgen	Forschungszentrum Julich GmbH				
109	Miller, James	Argonne National Laboratory				
110	Minh, Nguyen	University of California, San Diego				
111	Mittelsteadt, Cortney	Giner, Inc.				
112	Mohtadi, Rana	Toyota Motor Corporation				
113	More, Karren	Oak Ridge National Laboratory				
114	Moretto, Pietro	European Commission, Joint Research Centre				
115	Motyka, Ted	Savannah River National Laboratory				
116	Mukerjee, Sanjeev	Northeastern University				
117	Myers, Charlie	Trenergi Corporation				
118	Myers, Deborah	Argonne National Laboratory				
119	Nguyen, Nha	U.S. Department of Transportation				
120	Niangar, Ellazar	Nissan Technical Center North America, Inc.				
121	Nicholas, Mike	University of California, Davis				
122	O'Brien, James	Idaho National Laboratory				
123	Odgaard, Madeleine IRD Fuel Cells LLC					

No.	Name	Organization				
124	Olson, Gregory	Consultant				
125	Ott, Kevin	Los Alamos National Laboratory				
126	Owejan, Jon	Alfred State, SUNY College of Technology				
127	Parks, George	FuelScience LLC				
128	Patel, Pinakin	Fuel Cell Energy, Inc.				
129	Pecharsky, Vitalij	Iowa State University				
130	Penev, Michael	National Renewable Energy Laboratory				
131	Perret, Robert	Nevada Technical Services LLC				
132	Perry, Mike	United Technologies Research Center				
133	Pietrasz, Patrick	Ford Motor Company				
134	Pivovar, Bryan	National Renewable Energy Laboratory				
135	Ramsden, Todd	National Renewable Energy Laboratory				
136	Resende, William	BMW				
137	Rhodes, Bill	National Nuclear Security Administration				
138	Richards, Mark	FuelCell Energy, Inc.				
139	Rinebold, Joel	Connecticut Center for Advanced Technology, Inc.				
140	Rose, Bob	Breakthrough Technologies Institute				
141	Rufael, Tecle	Chevron Corporation				
142	Sandrock, Gary	Oak Ridge National Laboratory				
143	Schneider, Jesse	BMW				
144	Serre-Combe, Pierre	CEA (Alternative Energies and Atomic Energy Commission				
		[France])				
145	Siegel, Don	University of Michigan, Ann Arbor				
146	Snyder, Joshua	Drexel University				
147	Sofronis, Petros	University of Illinois, Urbana-Champaign				
148	Song, Min-Kyu	Washington State University				
149	Soto, Herie	Shell Oil Company				
150	Spitler, Mark	U.S. Department of Energy				
151	Stamenkovic, Vojislav	Argonne National Laboratory				
152	Steinbach, Andy	3M				
153	Stolten, Detlef	Forschungszentrum Julich GmbH				
154	St-Pierre, Jean	University of Hawaii, Manoa				
155	Swartz, Scott	NexTech Materials, LTD				
156	Thomas, C.E. (Sandy)	Clean Car Options				
157	Toughiry, Mark	U.S. Department of Transportation				
158	Trabold, Tom	Rochester Institute of Technology				
159	Trocciola, John	SRA International, Inc.				
160	van der Vliet, Dennis	3M				
161	van Hassel, Bart	United Technologies Research Center				
162	Vanderborgh, Nicholas	Los Alamos National Laboratory (retired)				
163	Veenstra, Mike	Ford Motor Company				
164	Verduzco, Laura	Chevron Corporation				
165	Wagner, Frederick T.	General Motors				
166	Waldecker, James	Ford Motor Company				
167	Walk, Alex	SGL Group				
168	Wang, Conghua	TreadStone Technologies, Inc.				
169	Warren, Dave	Oak Ridge National Laboratory				
170	Weber, Adam	Lawrence Berkeley National Laboratory				
171	Wei, Max	Lawrence Berkeley National Laboratory				
172	Wheeler, Douglas	DJW Technology LLC				
173 174	Williams, Mark Wilson, Mahlon	National Energy Technology Laboratory				
1/4	vv 118011, 1v1a111011	Los Alamos National Laboratory				

No.	Name	Organization		
175	Woods, Stephen	National Aeronautics and Space Administration		
176	Xu, Hui	Giner, Inc.		
177	Yandrasits, Michael	3M		
178	Zelenay, Piotr	Los Alamos National Laboratory		
179	Zhu, Yimin	OneD Material, LLC		

Summary of Peer Review Panel's Crosscutting Comments and Recommendations

AMR panel members provided comments and recommendations regarding selected DOE hydrogen and fuel cell projects, overall management of the Hydrogen and Fuel Cells Program, and the AMR peer evaluation process. The project comments, recommendations, and scores are provided in the following sections of this report, grouped by sub-program. Comments about sub-program management are provided in Appendix B.

Analysis Methodology

A total of 117 Fuel Cell Technologies Office (FCTO) projects were reviewed at the meeting. As shown in Table 1, 179 review panel members participated in the AMR process, providing a total of 704 project evaluations. These reviewers were asked to provide numeric scores (on a scale of 1-4, including half-point intervals, with 4 being the highest) for five aspects of the work presented. Sample evaluation forms are provided in Appendix C. Scores and comments were submitted using laptops (provided on-site) to an online, private database, allowing for real-time tracking of the review process. A list of projects that were presented at the AMR but not reviewed is provided in Appendix D.

For the Hydrogen Production and Delivery; Hydrogen Storage; Fuel Cells; Manufacturing R&D; Safety, Codes and Standards; and Systems Analysis sub-programs, scores were based on the following five criteria and weights:

- Score 1: Approach to performing the work (20%)
- Score 2: Accomplishments and progress toward overall project and DOE goals (45%)
- Score 3: Collaboration and coordination with other institutions (10%)
- Score 4: Relevance/potential impact on DOE Program goals and RD&D objectives (15%)
- Score 5: Proposed future work (10%)

For each project, individual reviewer scores for each of the five criteria were weighted using the formula in the box below to create a final score for each reviewer for that project. The average score for each project was then calculated by averaging the final scores for individual reviewers. The individual reviewer scores for each question were also averaged to provide information on the project's question-by-question scoring. In this manner, a project's final overall score can be meaningfully compared to that of another project.

Final Overall Score = [Score 1 x 0.20] + [Score 2 x 0.45] + [Score 3 x 0.10] + [Score 4 x 0.15] + [Score 5 x 0.10]

A perfect overall score of "4" indicates that a project satisfied the five criteria to the fullest possible extent; the lowest possible overall score of "1" indicates that a project did not satisfactorily meet any of the requirements of the five criteria.

For the Market Transformation and Technology Validation sub-programs, scores were based on the following five criteria and weights:

- Score 1: Relevance/potential impact on DOE Program goals and RD&D objectives (15%)
- Score 2: Strategy for technical validation and/or deployment (20%)
- Score 3: Accomplishments and progress toward overall project and DOE goals (45%)
- Score 4: Collaboration and coordination with other institutions (10%)
- Score 5: Proposed future work (10%)

For all sub-programs, reviewers were also asked to provide qualitative comments regarding the five criteria, specific strengths and weaknesses of the project, and any recommendations relating to the work scope. These comments were also entered into the online, private database for easy retrieval and analysis.

Organization of the Report

The project comments and scores are grouped by sub-program (Hydrogen Production and Delivery; Hydrogen Storage; Fuel Cells; Manufacturing R&D; Technology Validation; Safety, Codes and Standards; Market Transformation; and Systems Analysis) in order to align with FCTO's planning scheme. Each of these sections begins with a brief description of the general type of research and development or other activity being conducted. Next are the results of the reviews of each project presented at the 2015 AMR. The report also includes a summary of the qualitative comments for each project, as well as a graph showing the overall project score and a comparison of how each project aligns with all of the other projects in its sub-program. A sample graph is provided in Figure 1.

Projects are compared based on a consistent set of criteria. Each project report includes a chart with bars representing that project's average scores for each of the five designated criteria. The gray vertical hash marks that overlay the blue bars represent the corresponding maximum, average, and minimum scores for all of the projects in the same sub-program.

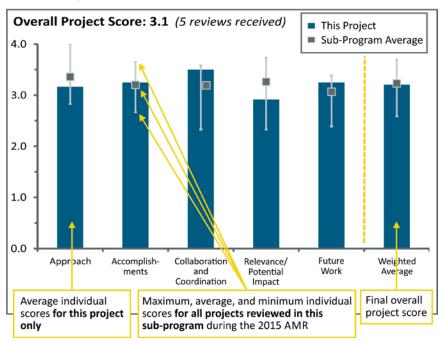


Figure 1: Sample Project Score Graph with Explanation

For clarification, consider a hypothetical review in which only five projects were presented and reviewed in a subprogram. Table 2 displays the average scores for each project according to the five rated criteria.

Table 2: Sample Project Scores

	Approach (20%)	Accomplishments (45%)	Collaboration and Coordination (10%)	Relevance/ Potential Impact (15%)	Future Work (10%)
Project A	3.4	3.3	3.3	3.2	3.1
Project B	3.1	2.8	2.7	2.7	2.9
Project C	3.0	2.6	2.7	2.8	2.9
Project D	3.4	3.5	3.4	3.2	3.3
Project E	3.6	3.7	3.5	3.4	3.4
Maximum	3.6	3.7	3.5	3.4	3.4
Average	3.3	3.2	3.1	3.0	3.1
Minimum	3.0	2.6	2.7	2.7	2.9

Using this data, the chart for Project A would contain five bars representing the values listed for that project in Table 2. A gray hash mark indicating the related maximum, average, and minimum values for all of the projects in Project A's sub-program (the last three lines in Table 2) would overlay each corresponding bar to facilitate comparison. In addition, each project's criteria scores would be weighted and combined to produce a final, overall project score that would permit meaningful comparisons to other projects. Below is a sample calculation for the Project A weighted score.

Final Score for Project A = $[3.4 \times 0.20] + [3.3 \times 0.45] + [3.3 \times 0.10] + [3.2 \times 0.15] + [3.1 \times 0.10] = 3.3$