


... for a brighter future

# U.S. Department of Energy





A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

# **2015 DOE Hydrogen and Fuel Cells Program Review**

# Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading

Pls:

Vojislav R. Stamenkovic

Nenad M. Markovic

**Materials Science Division** 

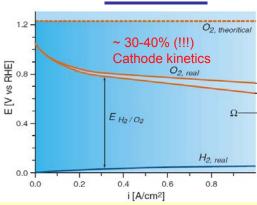
**Argonne National Laboratory** 

Project ID# FC008

This presentation does not contain any proprietary, confidential, or otherwise restricted information



## **Timeline**


Project start: 9/2009

Project end: 9/2015

# **Budget**

- Total Project funding \$ 5.1M
- Funding for FY14: \$ 764K
- Planned FY15 DOE Funding: \$764K

## **Barriers**



- 1) Durability of fuel cell stack
- 2) Cost (catalyst, membrane, gdl)
- 3) Performance (losses and activity)

## **Partners:**

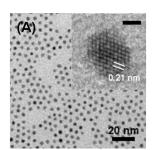
- Oak Ridge National Laboratory Karren More
- Argonne National Laboratory Debbie Myers
- Los Alamos National Laboratory Rod Borup

#### **Project Lead:**

Argonne National Laboratory

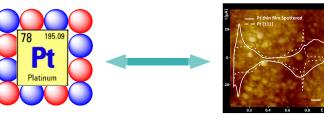


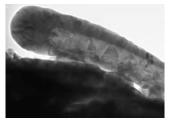
#### Relevance

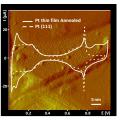

<u>Objectives</u> The main focus of ongoing DOE Hydrogen & Fuel Cell Program is development of highly-efficient and durable multimetallic PtMN (M, N = Co, Ni, Fe, V, T) <u>nanosegregated</u> catalysts for the oxygen reduction reaction with ultra low-Pt content

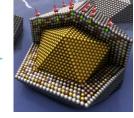
## **DOE Technical Targets**

- Specific activity @0.9V<sub>iR-free</sub>: 720 μA/cm<sup>2</sup>
- Mass activity @0.9V: 0.44 A/mg<sub>Pt</sub>
- Electrochemical area loss: < 40%</li>
- Catalyst support loss: < 30%</li>
- PGM Total content: 0.2 g/kW
- PGM Total loading: 0.2 mg/cm<sup>2</sup><sub>electrode</sub>
- Cost\*: \$ 30/kW<sub>e</sub>
- Durability w/cycling (80°C): 5000 hrs
   \*based on Pt cost of \$450/troy ounce


## **ANL Technical Targets**


- Specific activity @ 0.9V<sub>iR-free</sub>
   2015 DOE target x 3
- Mass activity @ 0.9V<sub>iR-free</sub>
   2015 DOE target x 3
- Electrochemical area loss 2015 DOE target
- PGM Total content
   < 0.1g/kW</li>




# **Approach**

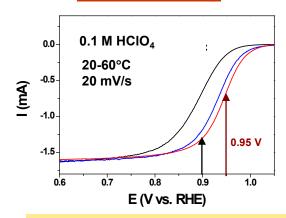








**EXTENDED Multi-M SURFACES** 


THIN METAL FILMS / MODEL NANOPARTICLES

**NANOPARTICLES** 

Materials-by-design approach - by ANL to design, characterize, understand, synthesize/fabricate, test and develope advanced nanosegregated multi-metallic nanoparticles and nanostructured thin metal films

#### **Well-Defined Systems Nanosegregated Profile** Advanced **Nanoscale** 19 Target Activity Catalyst Pt[111]-Skin surface Pt3Ni(111) Specific Activity: $i_k @ 0.9V [mA/cm^2_{real}]$ Activity improvement factor vs. Pt-poly Pt=100 at.% (a) Pt<sub>3</sub>Co 3 2 Pt-poly t-skin surfaces Pt-skeleton surfaces Pt/C Pt<sub>3</sub>Ni(111)-Skin ~100 times more active - 3.4 - 3.0 - 2.6 than the state-of-the-art Pt/C catalysts d-band center [eV]

#### **Intrinsic Activity**

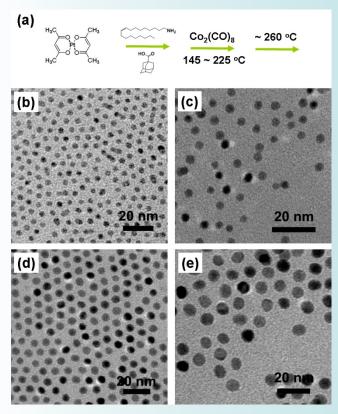


#### **RDE:**

- ORR activity measured at 0.95V
- iR corrected currents
- Measurements without ionomer

- Rational synthesis based on well-defined systems
- Addition of the elements that hinder Pt dissolution
- Activity boost by lower surface coverage of spectators
- Prevent loss of TM atoms without activity decrease

# **Approach / Milestone**


|                                                       | Approasit, initiation                                                                |                |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|--|--|--|
| Milesto                                               | (Go-No Go Decision Met) one 1. Fundamental understanding (FY09-13)                   | (Accomplished) |  |  |  |
| 1.1                                                   | Resolved electronic/atomic structure and segregation profile                         | (100%)         |  |  |  |
| 1.2                                                   | Confirmed reaction mechanism of the ORR                                              | (100%)         |  |  |  |
| 1.3                                                   | Improved specific and mass activity                                                  | (95%)          |  |  |  |
| Milestone 2. Synthesis and characterization (FY10-14) |                                                                                      |                |  |  |  |
| 2.1                                                   | Physical methods: TM films (5-10 layers), nanoparticles (5-30                        | 00 nm) (95%)   |  |  |  |
| 2.2                                                   | Established chemical methods: colloidal and impregnation sy                          | nthesis (95%)  |  |  |  |
| 2.3                                                   | Characterization: Ex-situ (UHV, TEM) and in-situ (EXAFS, EC                          | C) (100%)      |  |  |  |
| 2.4                                                   | Theoretical modeling (DFT, MC) methods                                               | (95%)          |  |  |  |
| Milestone 3. Fabrication and testing (FY11-14)        |                                                                                      |                |  |  |  |
| 3.1                                                   | New PtM <sub>1</sub> M <sub>2</sub> catalysts with higher activity and improved dura | bility (95%)   |  |  |  |
| 3.2                                                   | Carbon support vs. nanostructured thin film catalysts                                | (95%)          |  |  |  |
| 3.3                                                   | MEA testing (50 cm <sup>2</sup> ) of the optimized catalysts                         | (85%)          |  |  |  |
|                                                       |                                                                                      |                |  |  |  |

3.4 Scale up of the catalyst fabrication in lab environment



(80%)

Colloidal solvo - thermal approach has been developed for monodispersed PtMN NPs with controlled size and composition



Efficient surfactant removal method does not change the catalyst properties

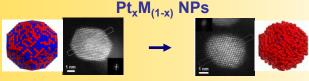
#### 1º Particle size effect applies to Pt-bimetallic NPs

Specific Activity increases with particle size: 3 < 4.5 < 6 < 9nm

Mass Activity decreases with particle size

Optimal size particle size ~5nm

J. Phys. Chem. C., 113 (2009) 19365


2º Temperature induced segregation in Pt-bimetallic NPs
Agglomeration prevented



Optimized annealing temperature 400-500°C

Phys.Chem.Chem.Phys., 12 (2010) 6933

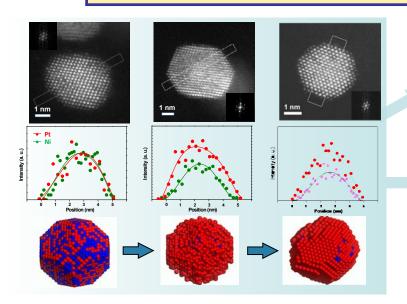
#### 3º Surface chemistry of homogeneous Pt-bimetallic NPs

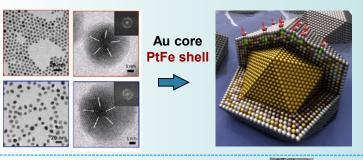


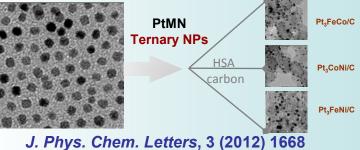
Dissolution of non Pt surface atoms leads to Pt-skeleton formation

Adv. Funct. Mat., 21 (2011) 147

#### 4° Composition effect in Pt-bimetallic NPs


Pt<sub>3</sub>M

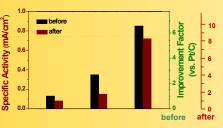


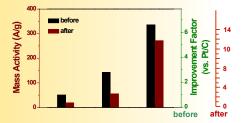






Optimal composition of Pt-bimetallic NPs is PtM



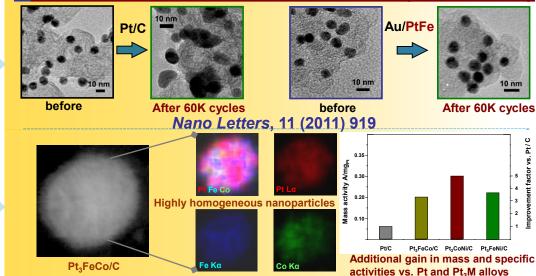


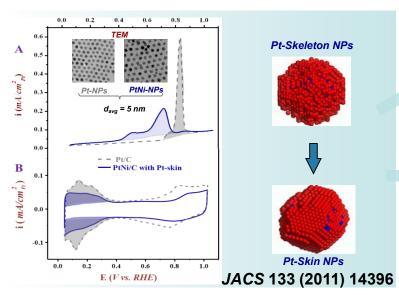



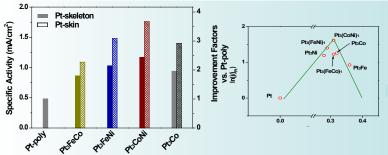

#### 5º Pt-bimetallic catalysts with mutilayered Pt-skin surfaces

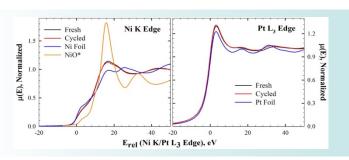
Synthesized PtNi NPs have homogeneous distribution of Pt, Ni

3-4ML of Pt-skeleton surfaces for PtNi acid leached NPs Multilayered Pt-skin surfaces confirmed for PtNi annealed NPs





RDE after 4K cycles @60°C (0.6-1.05V vs. RHE):


8-fold specific and 10-fold mass activity improvements over Pt/C JACS, 133 (2011) 14396

#### 6º Multimetallic NPs can further improve activity and durability









#### 7º Electrochemically active surface area of Pt-Skin catalysts

Catalysts with multilayered Pt-skin surfaces exhibit substantially lower coverage by H<sub>upd</sub> vs. Pt/C

(up to 40% lower H<sub>upd</sub> region is obtained on Pt-Skin catalyst)

Surface coverage of adsorbed CO is not affected on Pt-skin surfaces

Ratio between Q<sub>CO</sub>/Q<sub>Hund</sub>>1 is indication of Pt-skin formation

Electrochemical oxidation of adsorbed CO should be used for estimation of EAS of Pt-skin catalysts

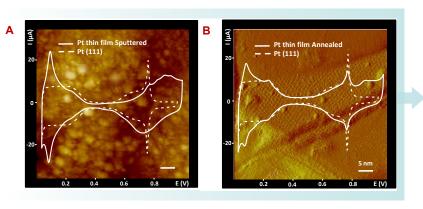
Benefits: to avoid overestimation of specific activity

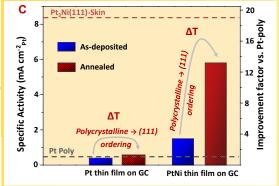
#### 8º Multimetallic Pt<sub>3</sub>NM alloys can further improve activity

Similarly to Pt<sub>3</sub>M alloys, ternary alloys form Pt-skeleton and Pt-skin surfaces depending on the surface treatment

The most active alloy is Pt<sub>3</sub>NiCo, with 4-fold improvement factor in specific activity compared to Pt-poly

J. Phys. Chem. Letters, 3 (2012) 1668

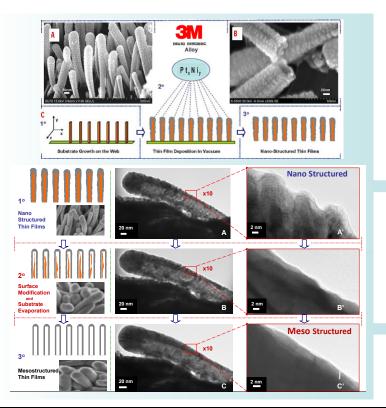

#### 9º MEA: PtNi-MLSkin/NPs 20,000 potential cycles, 0.6 – 0.95 V


No change in Ni and Pt edges after 20K cycles confirms high stability pf multilayered Pt-Skin under operating conditions

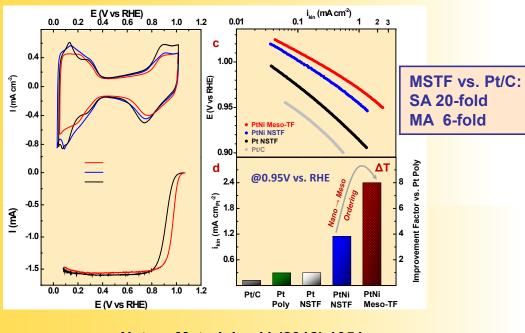
Specific surface area loss was only 12%, while Pt/C catalysts suffer loss of 20-50%

**Unpublished** 



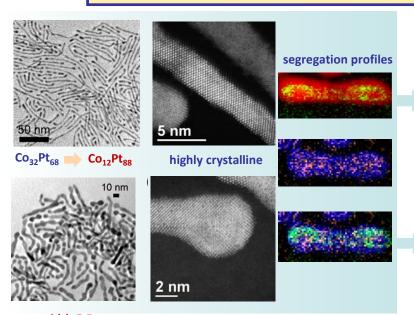




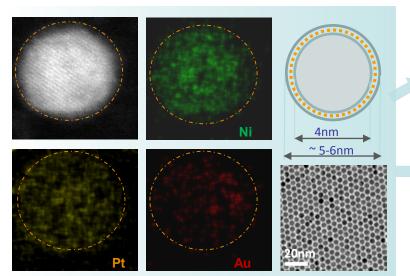


Scientific Achievement
Control of surface structure
and morphology of
multimetallic thin films
without use of templates for
epitaxial growth

Significance and Impact

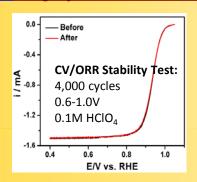
Enables electrocatalytic properties of Pt-alloy single crystals in thin film materials




#### 10° Mesostructured Thin Films with Tunable Morphology




**Nature Materials**, 11 (2012) 1051



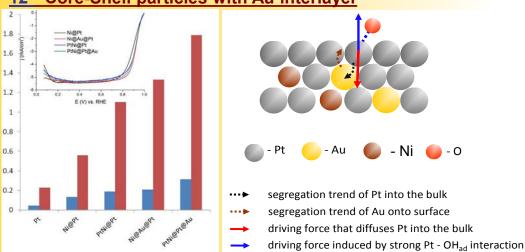




width 5.5 nm



#### 11° Highly active and durable multimetallic NWs






Pt Alloy NWs are active and durable catalyst with no change in activity after 4,000 cycles Specific activity depends on the composition and width of NWs Annealing of NWs induces formation of nanosegregated profile with Pt-Skin type of surface Pt-Skin confirmed by suppressed H<sub>upd</sub>, Pt-OH shift, CO<sub>ad</sub>/Hupd ratio, and high ORR activity

Angew. Chem. Int.Ed., 52 (2013) 3465

#### 12º Core-Shell particles with Au interlayer

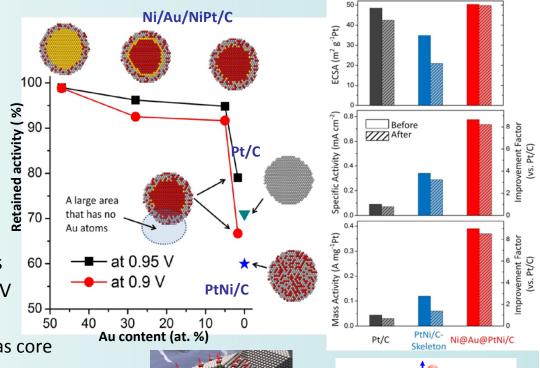


Nano Letters, 14 (2014) 6361

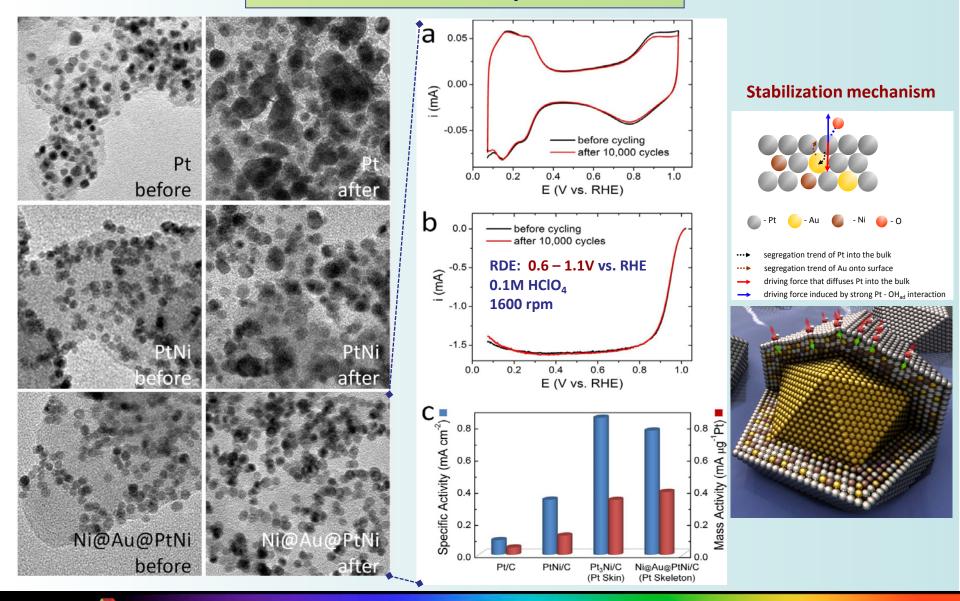


#### Non-PGM core /Au interlayer/PtM shell

#### **Scientific Achievement**

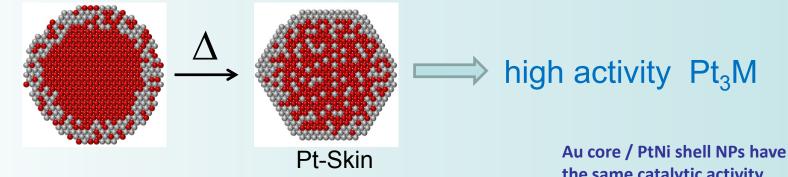

Nanoparticles with tuned size, surface and subsurface compositional profile based on Ni core coated with Au interlayer which is covered by PtNi shell enable advanced electrocatlytic properties for the ORR

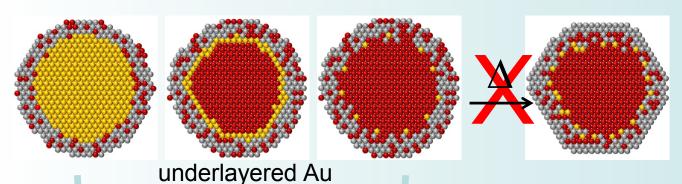
### **Significance and Impact**


ORR specific and mass activities of NP with core/interlayer/shell are 8-fold more active than Pt/C catalyst after less than 10% of loss in activity in 10K cycles between 0.6 and 1.1V

#### **Research Details**

- -Monodisperse 3nm Ni NPs were synthesized as core
- -Thickness of the Au interlayer was tuned for durability
- -Threshold content of Au was found to be 5 at. %
- -PtNi shell was deposited over Ni/Au core/shell particles
- Synergy between electronic effect and Au surface energy defines advanced electrocatalytic properties



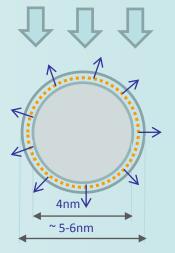


## Non-PGM core /Au interlayer/PtM shell



# Accomplishments and Progress: Core/Shell NPs with Au interlayer

Synthesis, Structural and Electrochemical evaluation of core shell NPs



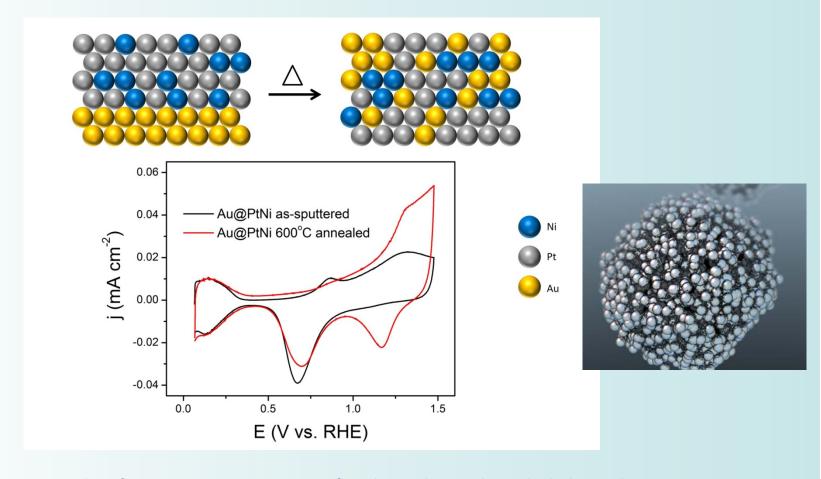



high durability

Subsurface Au decreases total number of Pt active sites for adsorption of O<sub>2</sub>

the same catalytic activity as PtNi NPs

Subsurface Au does not alter catalytic properties of NPs

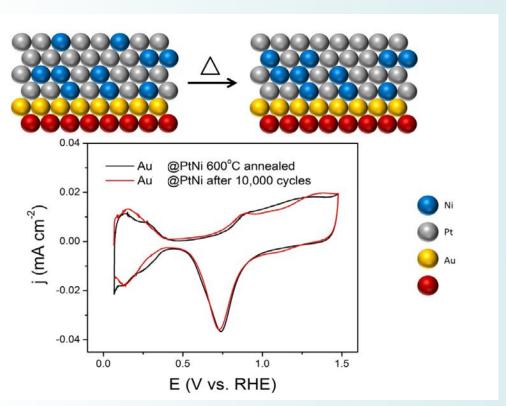


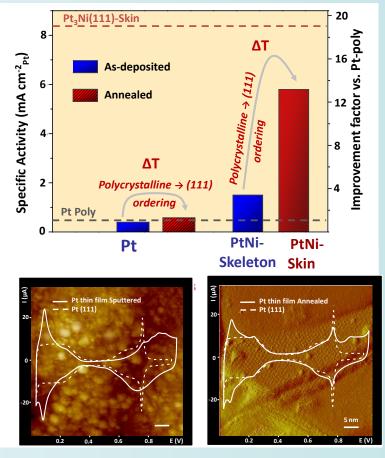

non-PGM core / Au interlayer / PtNi shell



## Accomplishments and Progress: Core/Shell NPs with Au interlayer

Synthesis, Structural and Electrochemical evaluation of core shell NPs





Subsurface Au segregates over Pt after thermal annealing which diminish number of Pt active sites for adsorption of O<sub>2</sub>

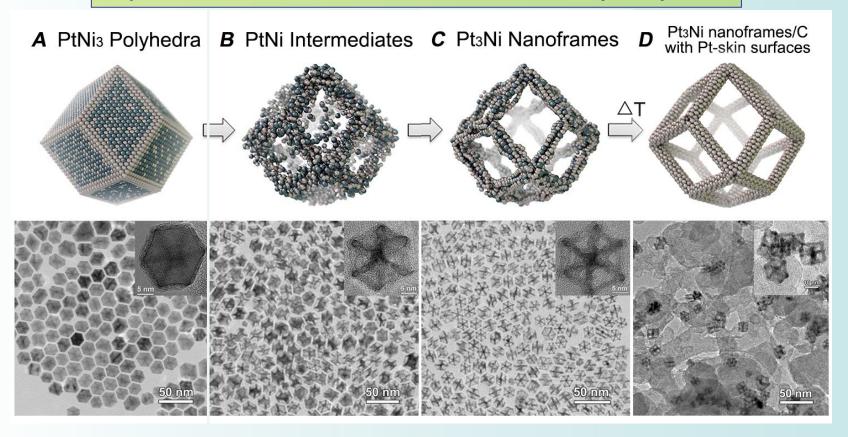


## Accomplishments and Progress: Core/Shell NPs with Au interlayer

#### Synthesis, Structural and Electrochemical evaluation of core shell NPs



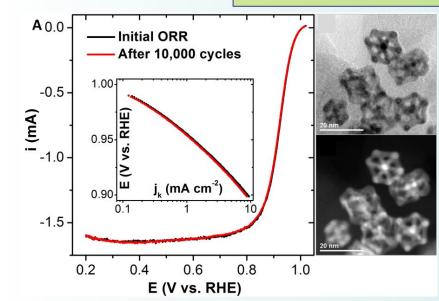



Subsurface Au does not segregate over Pt after thermal annealing, preserves number of Pt active sites and forms Pt-Skin overlayer with high ORR activity

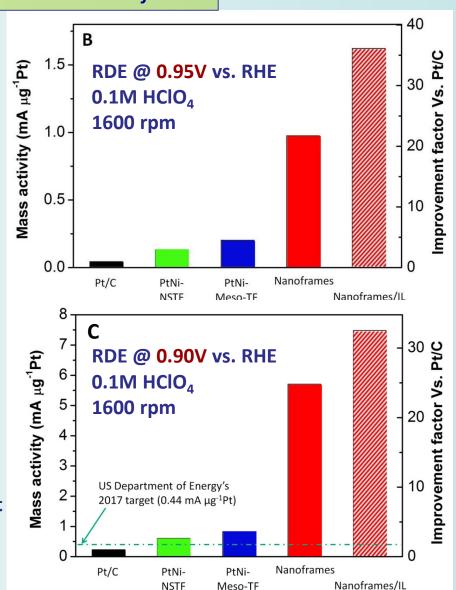
Dissolution of Pt surface and Ni near-surface is diminished by 2-3 order of magnitude



## Technical Accomplishments FY14: PtNi Nanoframes


Synthesis, Structural and Electrochemical evaluation of Nanoframes

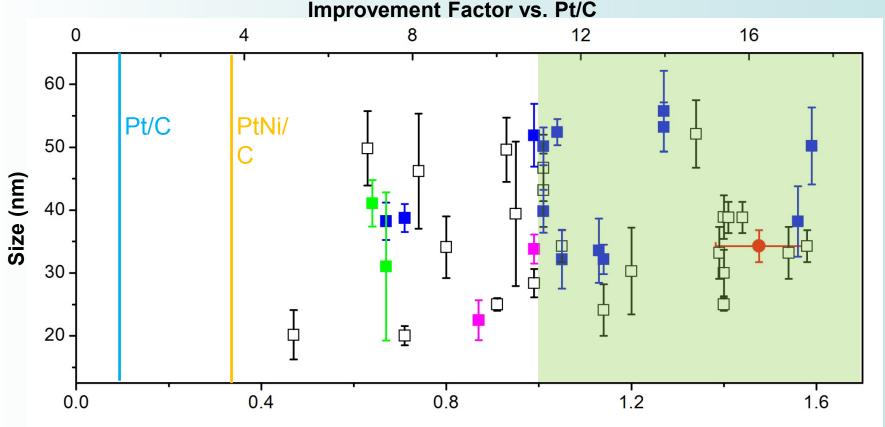



- H<sub>2</sub>PtCl<sub>6</sub> and Ni(NO<sub>3</sub>)<sub>2</sub> react in oleylamine at 270°C for 3 min forming solid PtNi<sub>3</sub> polyhedral NPs
- Reacting solution is exposed to O<sub>2</sub> that induces spontaneous corrosion of Ni
- Ni rich NPs are converted into Pt<sub>3</sub>Ni nanoframes with Pt-skeleton type of surfaces
- Controlled annealing induces Pt-Skin formation on nanoframe surfaces

## Technical Accomplishments FY14: PtNi Nanoframes

#### **Incorporation of Ionic Liquid Into the Nanoframes**



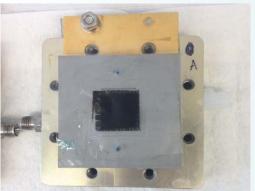

- No change in activity after 10K cycles 0.6 1.0 V
- Specific activity increase over 20-fold vs. Pt/C
- Mass activity increase over 35-fold vs. Pt/C
- Increase in mass activity over 15-fold vs. DOE target



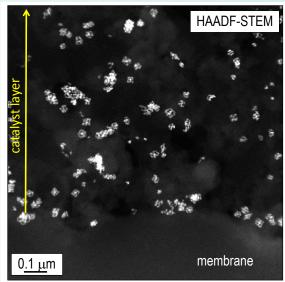
Lab Scale Synthesis, Structural and Electrochemical Evaluations

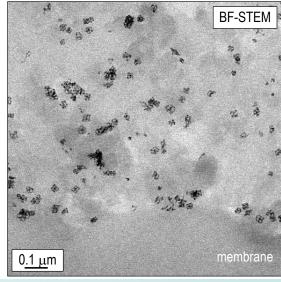
- value reported on Science
- measurements in 2013 and 2014
- measurements in 2015

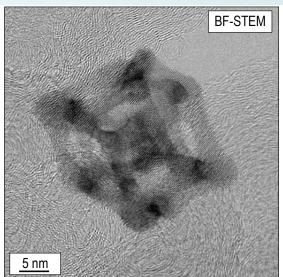
- 5x scale up
- 30 mg of Catalysts per batch 10x scale up 60 mg of Catalysts per batch

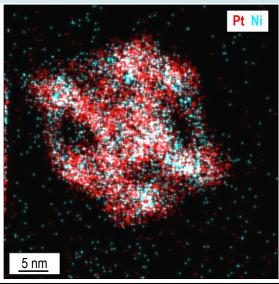



Specific Activity @0.95 V (mA cm<sup>-2</sup>)

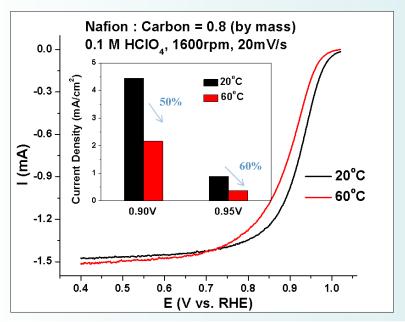




## Nanoframes in 5 cm<sup>2</sup> MEA ANL and ORNL





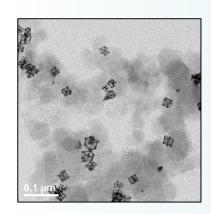









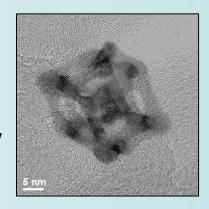

#### Nanoframes in RDE with Ionomer and T

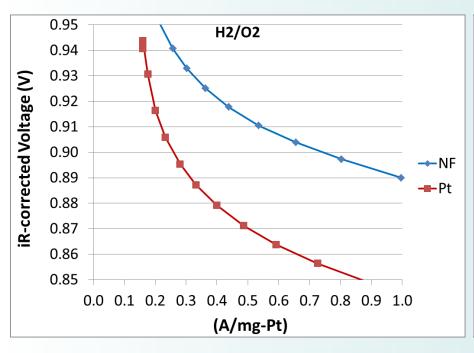


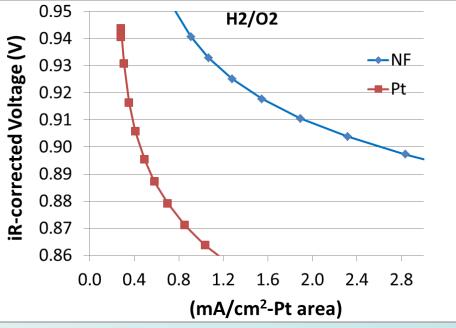

- 2x decrease in specific activity of with addition of ionomer to nanoframes
- Nanoframes have >10x higher activity than 20 wt% Pt/C

|       | 20°C<br>Specific<br>Activity<br>[mA/cm²]<br>No<br>Ionomer | 20°C Specific Activity [mA/cm²] I/C = 0.8 | 60°C Specific Activity [mA/cm²] No Ionomer | 60°C Specific Activity [mA/cm²] I/C = 0.8 |
|-------|-----------------------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|
| 0.95V | 1.25                                                      | 0.92                                      | 0.659                                      | 0.372                                     |
| 0.90V | 7.35                                                      | 4.87                                      | 4.14                                       | 2.16                                      |

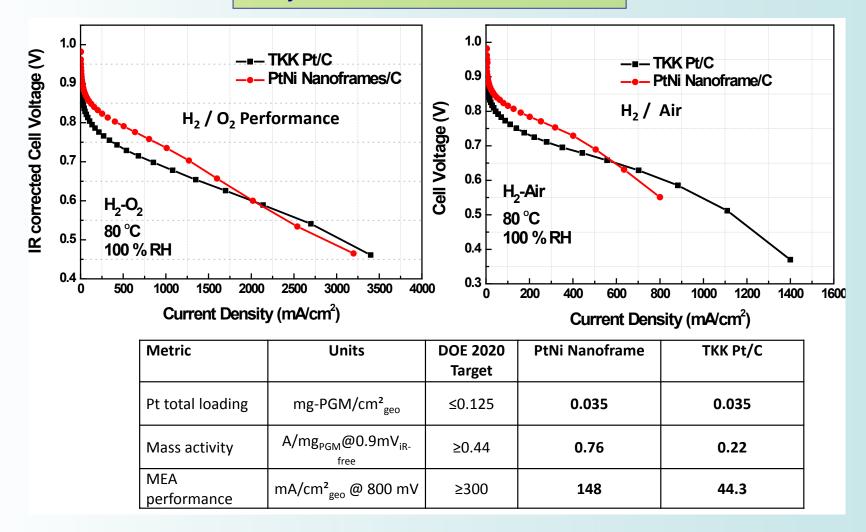
Specific Activity of Pt/C TKK 20 wt% I/C=0.8, 60°C, 0.9 V: **0.2 mA/cm<sup>2</sup>** 


Nanoframes in 5 cm<sup>2</sup> MEA ANL and ORNL





Cathode Loading: 0.035 mg-Pt/cm<sup>2</sup>, I/C = 0.8  $H_2/O_2$ , 80°C, 150 kPa(abs), 100%RH

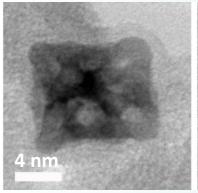
ORR Activity @ 0.9 V: N TKK 20 wt%Pt/C: 0. PtNi Nanoframes: 0.

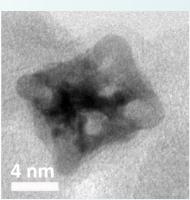

Mass Activity 0.24 A/mg-Pt 0.76 A/mg-Pt Specific Activity 0.45 mA/cm<sup>2</sup>-Pt 2.60 mA/cm<sup>2</sup>-Pt

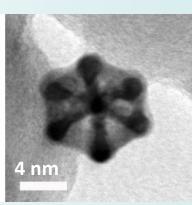


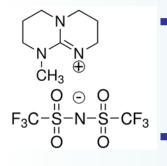





#### Nanoframes in 5 cm<sup>2</sup> MEA ANL and LANL



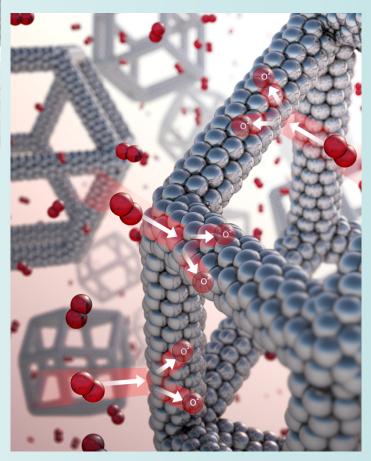


LANL obtained mass activity of 0.3 A/mg<sub>Pt</sub> @ 80°C and 3x higher Pt loading on the cathode in an unoptimized 5cm<sup>2</sup> MEA




Incorporation of Ionic Liquid Into the Nanoframes in MEA










Initial measurements with nanoframes and IL in MEA justifies this approach

Nanoframes with IL exhibit 30% improved activity

7-methyl-1,5,7triazabicyclo[4.4.0]dec-5-ene [MTBD]



#### Accomplishments and Progress: ORR on Pt-alloys Electrochemical Activity Map for the ORR RDE and MEA Pt<sub>3</sub>Ni(111) 20.0 **70** 8.0 20 PtNi Meso-STF Activity improvement factor vs. **PtNi Nanoframes** Single Crystal Alloys 6.0 15 Mesoscale ordering Pt - Skin Pt - Skeleton \* NSTF 4.0 10 \* PtNi Pt<sub>3</sub>Co **NSTF** Polycrystalline Alloys Pt<sub>3</sub>Fe Pt<sub>3</sub>Ni Pt<sub>3</sub>V 2.0 5.0 **VF in MEA PtNi** Pt<sub>3</sub>Ti Pt<sub>3</sub>Ni NSTF Pt<sub>3</sub>Co

Metallic Nanoparticles dispersed in Carbon

24

26

Atomic number (z)

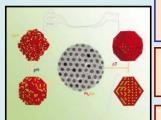
28

**22** 

Pt/C

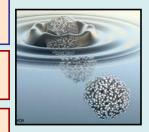
30

**78** 



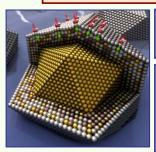

Activity improvement factor vs. Pt-poly

1.0

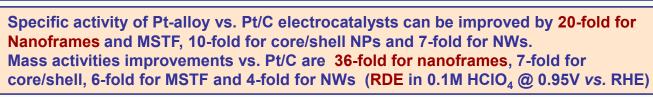

# Summary

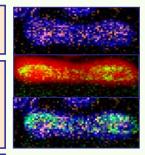
Electrocatalysts based on nanosegregated Pt alloy NPs, NWs, MSTFs and Nanoframes



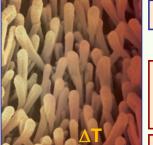

Efficient implantation of fundamental principles to the practical systems in the form of NPs, NWs, and nanoframes with adjustable compositional profile and structure

Established methodology that is capable to form and determine the nanosegregated Pt-skin surfaces for different classes of electrocatalysts





Established scalable synthetic protocols to produce larger amounts of materials

#### **Evaluation of multimetallic Pt-alloy electrocatalysts**

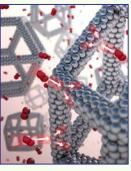



Different classes of materials have been synthesized in the form of NPs, NWs, nanoframes and characterized by TEM, HRSEM, in-situ HRTEM, XRD, RDE, MEA





Stability of Nanoframes, MSTF, core/shell NPs and NWs is superior compared to Pt/C




Tollanies, wis ir, core/silen NPs and NWs is superior compared to PUC



Two fold power of annealing facilitates the formation of an energetically more favorable surface state rich in (111) facets and distinct oscillatory segregation profile in core/shell NPs, NWs, mesostructured thin films and Nanoframes







#### **Future Work**

#### **FY 2015**

- Activity/stability evaluation and optimization of MEA protocols at ANL and LANL
- Achieving full lab scale capacity for scaling up of chemical synthesis of nanoframe catalysts
- Alternative approaches towards highly active and stable catalysts with low PGM content

#### FY 2016 (new funding period)

- Tailoring of the composition that can improve/optimize durability/performance in Pt-alloys
- Synthesis of tailored low-PGM practical catalysts (Meso-TF | Core/Interayer/Shell | Nanoframes)
- Characterization Structural and Electrochemical (RDE, MEA, HRTEM)
- Support Catalyst interactions / Tuning of the performance
- Scaling-up of synthesis to produce gram scale quantities of the most promising catalysts

## **Collaborations**

#### **SUB-CONTRACTORS**

Oak Ridge National Laboratory – HRTEM

#### **COLLABORATORS**

- Argonne National Laboratory Nanoscale fabrication and DFT (CNM)
- Argonne National Laboratory MEA Testing D. Myers (CSE)
- Los Alamos National Laboratory MEA Testing R. Borup / T. Rockward

# Publications and Presentations FY09-15

15 Publications
36 Presentations
over 1200 Citations
3 issued US patents
5 patent applications

US 7,871,738 B2 Jan. 18, 2011

(54) NANOSEGREGATED SURFACES AS CATALYSTS FOR FUEL CELLS

(75) Inventors: Vojislav Stamenkovic, Naperville, IL (US); Nenad M. Markovic, Hinsdale, IL

(US)

73) Assignee: UChicago Argonne, LLC, Chicago, IL

(US)

US 8,178,463 B2 May 15, 2012

US 8,685,878 B2 Apr. 1, 2014

- (54) HIGHLY DURABLE NANOSCALE ELECTROCATALYST BASED ON CORE SHELL PARTICLES
- (75) Inventors: Vojislav Stamenkovic, Naperville, IL
  (US); Nenad M. Markovic, Hinsdale, IL
  (US); Chao Wang, Chicago, IL (US);
  Hideo Daimon, Osaka (JP); Shouheng
  Sun, Providence, RI (US)
- (73) Assignee: UChicago Argonne, LLC, Chicago, IL (US)

