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Project Overview

Timeline
 Start Date: January 2014 
 End Date:  October 2014
 NCE Date: March 2014 

Budget
 Total Project: $552,464
• $ 429,264 DOE
• $ 123,199 Ballard

Barriers
A.Durability 

• Pt/carbon-supports/catalyst layer
B.Performance 
C.Cost (indirect)

Project Partners
 K. Karan – University of Calgary
 P. Atanassov -University of New 

Mexico

Objective
 Enhancement of FC-APOLLO predictive capability
• Include interaction effects of membrane transport properties (e.g. water 

transport, proton conductivity changes, water uptake,..) and catalyst layer 
local conditions to understand driving forces for Pt dissolution
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Project Background

Under Project DE-EE0000466, 

The following observations were made:
1. Catalyst Layer degradation was observed to be influenced by water 

content within the MEA

a) Relative humidity was shown to have a substantial effect on the 
degradation rates

2. Membrane/Ionomer is a key part of the water management within 
an MEA (eg. Water sorption/crossover/phase change)

3. The majority of membrane models are not capable to capture the 
effect of the liquid/vapor system nor the linkage between 
characteristic properties and overall behaviour.

a) FC-APOLLO was developed with a simplified membrane model 
and validated only for the PFSA NR211



NASDAQ:BLDP  TSX:BLD

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140
%RH

%
 P

t G
ro

w
th

, %
 E

PC
A 

Lo
ss

0.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
em

br
an

e 
Pt

 C
on

te
nt

, P
IT

M

Pt Growth
ECSA
PITM

Liquid 
water

Project Background:
Effect of RH on Pt Dissolution 

• Pt dissolution rate decreases with lower 
reactant RH (<100%)

• Decrease in Pt growth, ECSA, PITM

• Relatively small increase in Pt 
dissolution from 100%RH to saturated 
(120%RH)

Baseline MEA:50:50 Pt/LSAC, Nafion® ionomer (23%), 
0.4/0.1 mg/cm2 (Cathode/anode), NR211, BMP GDLs
AST: 0.6 V (30sec) 1.2 V (60 sec), 4700 cycles, X  RH, 80C
Diagnostic Air Polarization (STC): Air/H2, 100% RH, 5 psig, 75°C

“Understanding the effect of material properties and the
structure of MEA components is critical to understanding
MEA performance and degradation”
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Project Background
Impact of Membrane Type

• BOL Performance and degradation at 1.2V UPL are insensitive for the two membranes

• AST cycling at 1.3V UPL shows lower performance loss for Membrane A

• Degradation rates (Pt dissolution and corrosion) were impacted by water content
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AST: 0.6V (30sec)1.2V (60 sec) 4700 cycles @ 100% RH, 80°C
Diagnostic Air Polarization (STC) Air/H2,100% RH, 5 psig, 75°C
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Experimental Approach

MEA In-situ diagnostics
 H2/Air Polarization

Performance
Limiting current

 H2/O2 polarization
V-loss break-down: Kinetic, Ohmic, Mass Transport

 Cyclic Voltametry
CO stripping/ECSA
Double layer charging current
H2 cross-over
Pt surface understanding

 Electrochemical Impedance Spectroscopy (EIS)
Cell resistance
Ionomer resistance
Double layer charging current

 Mass and specific activity
 Water Cross-over

Ex-situ Diagnostics*
 SEM: Catalyst/membrane thickness
 SEM/EDX: Pt content in membrane and 

catalyst layer
 XRD: Pt crystallite size and orientation
 BPS Diagnostic Tool 
 Limiting Current

Selected 
BOT/EOT 

Samples for 
XPS/TEM 

Analysis at 
UNM

BOT

AST 
Testing

Conditioning

MOT x

MOT 1

EOT

BOT/MOT/EOT = Beginning/Mid/End of Test

Standard AST: 0.6V (30sec)1.2V (60 
sec), 4700 cycles, 100% RH, 80°C

Standard Diagnostic Air Polarization (STC): 
Air/H2, 100% RH, 5 psig, 75°C
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Experimental Approach
Accelerated Stress Tests

• Cyclic OCV AST combines chemical and mechanical degradation
 Chemical Phase: OCV operation at increased T, low RH, increased oxygen concentration

 Mechanical Phase: N2 operation, wet/dry cycling

Cathode AST

• Cathode AST 
 Air/H2, 80°C, 100% RH,  0.6 V (30s) to 1.2 V 

(150s) cycles

UPL

Cycle

LPL

UPL Dwell Time

Membrane AST (Cyclic OCV)
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Impact of Membrane Properties 
Performance

• PFSA: NR211 > NR212
 Performance should decrease due to 

the additional resistance from the 
increased thickness

• R-PFSA: LEW > HEW
 Performance should increase with the 

lower EW material

• R-HC: LEW < HEW 
 LEW showed membrane degradation 

with BOL operation
 SEM showed irregular thickness and 

reinforcement band
 Results not considered 

representative*
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Impact of Membrane Properties on Performance

• Performance degradation
 Strongly related to changes 

in the CL Ionic loss category
 Platinum depletion causes 

shifts in local current away 
from the membrane/CCL 
interface

• R-HC: LEW 
 large increase in the ohmic

loss 
 consistent with observed 

early degradation 
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Impact of Membrane Properties 
Cathode Pt Dissolution

• EW Effect: Greater ECSA loss for  
thinner, lower EW membrane in each 
membrane group.  
 PFSA thickness effect is small , EW 

more dominant

 Lower EW membranes  higher water 
content  higher water content at the 
membrane / catalyst interface where 
the Pt dissolution is the greatest.  

• Membrane water content appears to 
be more important than the water 
cross-over for degradation
 Membranes with more water cross-

over to the cathode had less 
degradation.  

Degradation as a Function of Membrane Thickness
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• The R-PFSA membranes had lower ECSA loss than PFSA, suggesting that 
change in structure (e.g. reinforcement) also had a beneficial effect.  

• Similar performance losses at 1A/cm2 for all membranes
 ECSA values had not reached the critical value near (75% ECSA loss)

 Exception: R-HC LEW showed signs of membrane degradation, high ECSA and performance 
losses 11
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Chemical Degradation of Membranes

Membrane Type

Membrane Thickness (micron)
Water Crossover, Anode to Cathode at  
95%RH cathode,60% RH anode, 1.3A/cm2

(g/min)

H2 Permeance 75°C, 100% RH
(mol / (m2 s Pa))

Conditioned After 
Membrane AST Conditioned After 

Membrane AST Conditioned After 
Membrane AST

Baseline:
NR211 28 25 -0.15 -0.16 1.6E-07 1.8E-07

NR212 57 35 -0.05 Repeat 
pending 7.3E-08 6.4E-07

Reinforced 
PFSA Low EW 
(R-PFSA-LEW)

19 N/A -0.25 Data pending 2.4E-07 2.4E-07

Membrane Type

R Cell (mΩ.cm2) ECSA Pt Size (nm)

Conditioned After 
Membrane AST Conditioned After 

Membrane AST Conditioned After 
Membrane AST

Baseline:
NR211 69 66 183 147 5.3 5.1

NR212 101 49 182 143 4.8 5.2

Reinforced 
PFSA Low EW 
(R-PFSA-LEW)

60 56 200 147 5.1 N/A

12
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Impact of Membrane Degradation 
Performance

Effect of Membrane AST on Performance:
• All membranes showed performance degradation after the membrane AST
• NR212 thinned the most, the performance was less impacted as compared 

to NR211 and R-PFSA Low EW
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NR212 Membrane 
Degradation– Repeated

• Significant degradation 
during first attempt

• Diagnostics decreased
 Low RH removed

• OCV cycles decreased
 Less degradation

Cathode AST 
• Cycles limited to 1400 due 

to transfer leak 

Impact of Membrane Degradation 
Pt Dissolution

Membrane Degradation
• 1 to 3 OCV cycles  Similar performance loss
• OCV Cycle + Cathode AST
 Voltage loss significantly increased vs. individual ASTs
 Voltage loss increased with increasing OCV cycles 14
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NR212 – Membrane 
Degradation Repeated

• Diagnostics decreased
 Low RH removed

• OCV cycles decreased
 Less degradation

Impact of Membrane Degradation 
Pt Dissolution

Membrane Degradation
• 1 vs 3 OCV cycles  Transfer Leak for 3 OCV cycle MEA at ~1400 Cycles
• OCV Cycle vs Cathode AST baseline 
 Rate of voltage loss appears to be faster over the course of the AST test as a 

function of the number of OCV cycles 15
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AST baseline
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with membrane 
degradation

 Both NR212 samples 
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crossover with AST cycling
Membrane degradation 

due to Cathode AST for 
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Original Dataset
Membrane Degradation

• 1 vs 3 OCV cycles 
 Increased CL Ionic Losses 

with increased OCV cycles

• OCV Cycle vs Cathode 
AST baseline
 Increased CL Ionic losses for 

OCV/Cathode AST vs. OCV 
cycled  only
 Significantly greater CL 

ionic losses vs. cathode AST 
only
 Results are consistent with 

original dataset for NR211 
and R-PFSA
 Platinum depletion near 

the membrane/CCL 
interface may be a 
possible cause

Impact of Membrane Degradation 
Pt Dissolution
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CL Ionic Losses
Effect of Pt depletion

• CL Ionic Loss increase from BOT to EOT due to Pt 
depletion which shifts the reaction penetration 
further into the layer

• Increase in Effective Thickness (penetration) 
equal to ~30% of full thickness agrees with the 
thickness of the  Pt depleted region by SEM
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Membrane is immersed in liquid water. Pressure is 
applied on one side to create hydraulic pressure driven 
permeation.      

Liquid-Liquid permeation (LLP)

Membrane is floated on liquid water. Humidified air is 
flowed on one side to create concentration gradient 
driven permeation.     

Liquid-Vapour permeation (LVP)

One side of the membrane is exposed to saturated 
water vapour. Humidified air is flowed on one side to 
create concentration gradient driven permeation.         

Vapour-Vapour permeation (VVP)

Okada et al. (2002)
Villaluenga et al. (2003)
Evans et al. (2006)

Motupally et al. (2000)
Ge et al. (2005)
Majsztrik et al. (2007)
Romero et al. (2008)

Motupally et al. (2000)
Ge et al. (2005)
Majsztrik et al. (2007)
Romero et al. (2008)

Driving Force of Water Permeation and its Types 

19
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Relating Theory to Experiment

ElectrodeElectrode Membrane

• Experimentally
 Liquid-Vapour boundaries show the highest crossover and Liquid-Liquid show the 

lowest.

• This is explained by a combination of
 Bulk membrane transport equations  (e.g., Weber)

 Interfacial resistances from sorption and phase change (e.g., Monroe)

Interfacial 
Resistance

Interfacial 
Resistance
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Experimental Datasets
Original vs New Data

• Increase in performance due to
higher operating pressure

• Performance gains are not
retained under low RH

• Proton transport limiting
reaction rates

Testing New Membrane Model
 Improved model captures ..

 Pressure based increase
in performance
 Low RH limitation on the

reaction rates

Steady State FC-STC (New MEA)

21
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Experimental Datasets
Testing New Membrane Model

• The improved model captures:
 Pressure based increase in 

performance 
 Low RH limitation on the 

reaction rates 
• The model is able to capture the 

shift in the datasets
 The parameter sets are 

constant and not changed
 The physical aspects of the 

different MEAs ARE accounted 
for:
o Loading changes, Nafion® 

content, GDL porosity etc.

Steady State FC-STC (New MEA)

Commercial ConfidentialCommercial Confidential 22
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Transient Effects & Water Content 
• Initial conditions
 “no load” start
 Uniform RH, concentration, 

Temp, Pressure
 Small load applied mimicking 

load bank at 0 A (OCV)
 Load is drawn/Voltage applied at 

0.5[s]
 Small ramp over 0.1s simulates 

“load on”
• Reaching Steady-state
 Polarization curve levels out as 

the system balances the forming 
water and changes local reactant 
concentrations
 Water Content Reaches break-

through at channel face and 
then broadens, forming the 
steady state profile

Transient effects
Improved Membrane Model

23
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Transient Effects & Water Content 
• Initial conditions
 “no load” start
 Uniform RH, concentration,

Temp, Pressure
 Small load applied mimicking

load bank at 0 A (OCV)
 Load is drawn/Voltage applied

at 0.5[s]
 Small ramp over 0.1s simulates

“load on”

• Reaching Steady-state
 Differences in the early decay

are related to the “rate” or
speed at which the MEA
reaches the steady water
content.
 Constant current holds tend to

have a faster development
than voltage holds do to the
constant rate of reaction
(hence water production)

Transient effects
Improved Membrane Model

24
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• O-Pt-OH dissolution, it can potentially cause the incoming degradation rate to 
have the same slope

• O-Pt(2) lingers and causes the outgoing rate to reduce over a wide potential 
window

• Cause of the cathodic peak potential shift: 

•RH/Sub surface O/Proton concentration
Mismatch because certain 
species are not 
considered in the 
mechanism?

ORR Multistep/Platinum Dissolution
Sources of Error and discrepancies
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ORR Multistep/Platinum Dissolution
Time Resolution of Platinum Dissolution
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Summary & Path Forward

Summary:
• Repeated NR212 has been completed
• NR212 showed significantly increased sensitivity to the combination 

OCV/Cathode AST as compared to the other membranes
• NR212 may have experienced membrane degradation during the 

Cathode AST whereas the other materials did not
• Rate of ECSA loss appears to accelerate with increased OCV cycling 

for NR212

Project Wrap-up and Reporting:
• Complete Analysis of Low-loaded catalyst tests
• Complete correlations and model validation package

27
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Plan Forward

FC-APOLLO Development and Release:
• Complete community-driven integration of improved sub-modules:

 Transient Weber/Newman membrane sub-model in branch
 Transient Channel Flow Solver
 Improved ORR/OER and Platinum Dissolution Sub-model

• On-going Ex-situ validation with L/L, L/V, V/V ex-situ test
• Continue Beta testing with users (exit stage mid-summer) 
• Complete Documentation package for FC-APOLLO (D. Harvey Thesis) 
• Release code following a BETA test schedule  

 Simple CCM – April 2015
 Simple MEA – May 2015
 Steady-state, full MEA – June 2015
 Transient, Full MEA – July 2015
 Transient, Full MEA with Degradation – August 2015
 Transient, Full MEA with Degradation/Membrane Model – September 2015
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FC-APOLLO – BETA Status

BETA Testing:
• Work with BETA users began in November 2014.
• Current BETA user list:

1) Johnson-Matthey/U.British Columbia, (Lead: Peter Gray/David Wilkinson)
2) Pajarito Powder/U.Michigan (Lead: Barr Halevi/Scott Barton)
3) AFCC (Lead: Andreas Putz)
4) Queen’s University (Lead: J. Pharoah)
5) Simon Fraser University (Lead: Erik Kjeang)

• Working with each user to setup hardware/OS, OpenFOAM®/Foam-Extend, and 
a series of gradual demo codes for training in FC-APOLLO
 Download via GIT

 Nightly software builds/updates

 Functionality and consistency between locations is being confirmed

 Parallelization is functional, working with OpenCFD to apply a series of improvements for 
efficiency (speed up in degradation runs) and code standard conformity

 Current Improvements have yielded a 2 – 20x speedup, depending on the case
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30

Access to FC-APOLLO

 Linux
• Model runs in a Linux based environment

• Hosting internally is done via cluster and remote login

• Local installs are done using a Git repository

 OpenFoam®

• Simulation suite was built using foam-extend-3.1

• FC-APOLLO builds will remain current against the 

 Paraview
• www.paraview.org

• FC-APOLLO is built against the latest ParaviewTM release

 SourceForge
• Public repository

• www.sourceForge.net/projects/fcapollo

 GitHub
• “PRIVATE” repository for BETA users

http://www.paraview.org/
http://www.sourceforge.net/projects/fcapollo


Technical Backup Slides
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Impact of Membrane Degradation 
Pt Dissolution

• Membrane AST does not cause Pt growth or PITM
 Lower ECSA is observed – some Pt loss from cathode, not found in membrane 

may occur

• Membrane Degradation causes slightly higher Pt growth, but 
substantially less PITM after cathode AST
 Lower ECSA loss occurs with degraded membranes (except NR212 which had 

transfer – to be repeated)
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Impact of Membrane Degradation 
Pt Dissolution

NR212 – Repeated
Membrane Degradation

• 1 vs 3 OCV cycles 
 Transfer Leak for 3 OCV 

cycle MEA at ~1400 Cycles

• OCV Cycle vs Cathode 
AST baseline
 ECSA changes for the 

baseline and 1 OCV cycle 
share a similar trend after 
accounting for the initial 
offset
 3 OCV cycle starts out in the 

same pattern and then 
continues with a steep 
decrease in ECSA
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 Features:
• Performance and durability simulation
• Catalyst layer optimization
• Accelerated Stress Test (AST) behaviour
• Scalable simulations (1D  3D)
• Fully open source package

Degradation
Physics

Post
Processing

User 
Inputs

Transport 
Physics

Solver 
Modules

Material
Transport 
Properties

Geometry Mesh 
Generation

Parametric
Setup Performance

Electrochemistry

 Simulation Validation
• Performance - Material Composition

 Pt Loading (0.05 – 0.4 mg/cm2)
 Pt:Carbon Ratio (0.3 – 0.8)
 Pt:Ionomer Ratio (0.13 – 0.43)

• Performance - Operational Conditions
 Relative Humidity (60% and 100%)
 Oxidant Fraction (5 – 100%)
 Temperature (60, 70, 80 C) 

• Durability – Pt-Dissolution (square 
wave/triangle wave)
 AST cycle (0.6 – 1.2V) up to 2000 Cycles

• Durability – Carbon Corrosion (square 
wave/triangle wave)
 AST cycle (0.6 – 1.4V)  (pending)

FC-APOLLO Simulation Suite
Fuel Cell Application Package for Long Life Operation
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Experimental Status  Update
Low Loaded Catalyst Layers

• Beginning of Test
• Low current performance (<1 A/cm2) appears to 

be insensitive to EW
• High current performance (>1 A/cm2) may reflect 

difference in water content of the MEA

• ECSA loss <70% may not be significant 
(performance impact)
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