Development of Ultra-low Doped-Pt Cathode Catalysts for PEM Fuel Cells
(PHASE II)

P. I.: Branko N. Popov
Center for Electrochemical Engineering
University of South Carolina
Columbia SC 29208.

Washington DC
June 09, 2015
Overview

Timeline

- Start date: June 2010
- End date: December 2015 (No-cost Extension June-Dec 2015)
- Percent complete: 95%

Budget

- DOE Share: $3,800,000
- USC Cost Share: $950,000
- Total Project Cost: $4,750,000
- Total DOE Funds Spent*: $3,192,283

*as of 03/31/15

Barriers

A. Durability

- Retain kinetic activity and high current density performance in \(\text{H}_2/\text{air} \) after potential holding (support durability) and potential cycling (catalyst durability) experiments.

B. Cost

- Decrease in PGM content
- Cost effective synthesis procedures

C. Performance

- Obtain high current density performance in \(\text{H}_2/\text{air} \) and maintain the power density.

DOE Technical Targets

<table>
<thead>
<tr>
<th>Electro catalyst/MEA</th>
<th>2017 Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM loading</td>
<td>0.125 mg/cm²</td>
</tr>
<tr>
<td>Initial mass activity</td>
<td>≥0.44 A/mg_{PGM}</td>
</tr>
<tr>
<td>Mass activity and ECSA loss after 30k cycles ((0.6-1.0V)) (Catalyst durability)</td>
<td>≤ 40%</td>
</tr>
<tr>
<td>Potential loss after 30k cycles ((0.6-1.0V)) (Catalyst durability)</td>
<td>≤30 mV</td>
</tr>
<tr>
<td>Mass activity and ECSA loss after 400 h ((1.2 \text{ V})) (Support stability)</td>
<td>≤30 mV</td>
</tr>
<tr>
<td>Potential loss after 400 h ((1.2 \text{ V})) (Support stability)</td>
<td>≤30 mV</td>
</tr>
<tr>
<td>Mass activity and ECSA loss after 5k cycles ((1.0-1.5 \text{ V})) (Support stability)</td>
<td>≤ 40%</td>
</tr>
<tr>
<td>Potential loss after 5k cycles ((1.0-1.5 \text{ V})) (Support stability)</td>
<td>≤30 mV</td>
</tr>
</tbody>
</table>

Project Lead

- University of South Carolina (USC)

Subcontractor

- National Renewable Energy Laboratory (NREL)

Additional Interactions

- Rudiger Laufhutte (Univ. Illinois, Urbana Champaign)
- Dr. Lax Saraf (Clemson University)
- Dr. Alan Nicholls (Univ. Illinois, Chicago)
- Electron Microscopy Center, USC
Relevance

- Develop unique hybrid cathode catalyst (HCC) through interaction of **highly active and stable Pt and compressive Pt-lattice catalyst (Pt*)** with catalytically active and highly stable **carbon composite catalyst support (CCCS)** and **activated carbon composite support (A-CCS)**.
- Enhance the activity of HCC by increasing the synergistic effect of catalytic active sites present in the supports and those in Pt or Pt* catalyst.
- The specific objectives are to:
 - Perform optimization studies to develop two catalyst supports (CCCS and A-CCS) with high kinetic activity and stability.
 - Estimate the role of BET surface area, porosity, pore-size, pore-size distribution and hydrophilic/hydrophobic properties on the support stability.
- Synthesize low-PGM cathode catalyst for automotive application by decreasing the PGM loading while simultaneously increasing the catalytic activity and stability of CCCS and A-CCS and the activity of Pt*.
- Develop low cost procedure to synthesize the following hybrid cathode catalysts:
 - Pt/CCCS
 - Pt*/CCCS
 - Pt/A-CCS
 - Pt*/A-CCS

Develop a low cost catalyst with optimized mass activity, stability of mass activity, initial high current performance under H₂/air (power density), catalyst and support stability able to meet 2017 DOE targets.
The technology is based on a two-step USC-patented process to synthesize highly active and stable ultra-low PGM hybrid cathode catalyst (HCC).

Step I - Synthesis of CCCS and A-CCS supports
- The following major constraints were addressed when developing cathode catalyst supports for PEMFC for automotive applications:
 - Chemically and electrochemically stable at low pH and high temperature.
 - An onset potential and kinetic activity for ORR similar to that of the platinum catalyst.
- To accomplish these requirements CCCS and A-CCS were synthesized with optimized:
 - BET surface area, porosity, pore size and pore size distribution
 - Hydrophilic/hydrophobic ratio
 - Structural properties (amorphous/crystalline ratio).
 - Number of catalytic active sites through metal catalyzed pyrolysis.
 - Pt-support interaction by inclusion of active surface functional groups
 - Transition metal necessary for the formation of Pt* is encapsulated in the graphitic carbon structure.

Step II - Synthesis of compressive Pt-lattice catalyst
- Pt-lattice catalyst was synthesized through:
 - USC heating procedure that controls the particle size during pyrolysis.
 - Monolayers of Pt* were formed by diffusing Co atoms into Pt.
- Mathematical model was used to optimize:
 - The Co diffusion time
 - The pyrolysis temperature
 - Pt/Co stoichiometric ratio

Pt* = Compressive Pt Lattice Catalyst
Project Timeline (As per Revised SOPO Dated 01/23/2014)

<table>
<thead>
<tr>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestones 1 and 2

Task 1. Optimization studies of CCCS & A-CCS supports and Pt/CCCS, Pt*/CCCS, Pt/A-CCS & Pt*/A-CCS catalysts *(Initial mass activity of at least 0.3 A/mgP)**.

Task 2. Stability of mass activity of *(≤40% loss of initial value)* at least 0.26 A after 30k cycles. *(Milestone 3)*

Task 3. Support stability to demonstrate 0.26 A/mgPt and 30-50 mV loss after 400 h. *(Milestone 3)*

Task 4. Initial high current density performance of at least 1.5 A/cm² at 0.6 V_{ir-free} and power density of ≤0.24 g_{P/GM}/kW. *(Milestone 4)*

Task 5. Demonstration of high current density performance loss of 30-60 mV (at 0.8 A/cm²) after 30k cycles and 30-50 mV loss (at 0.8 A/cm²) after 400 h. *(Milestone 3)*

Task 6. Demonstration of most promising catalyst to meet initial mass activity of 0.3 A/mgPt, stability of mass activity of at least 0.26 A/mgPt and 30-60 mV loss at 0.8 A/cm² after 30k cycles. *(Milestone 3)*

Additional support durability testing: Cycling between 1.0 and 1.5 V for 5,000 cycles.

End of task.

Pt* = Compressive Pt Lattice Catalyst

Start date: May 2015

Performance evaluation of USC catalysts and MEAs at NREL

No-cost Extension: May-Dec 2015

Pt* = Compressive Pt Lattice Catalyst
Technical Accomplishments
Development of CCC Support

- Metal-catalyzed pyrolysis
- BET surface area, porosity, and pore-size optimization
- Optimization of hydrophilic/hydrophobic properties
- Evaluation of onset potential for oxygen reduction reaction and hydrogen peroxide formation.

HIGHLIGHT:

XRD: The degree of graphitization increases with the increase in the pyrolysis temperature. Presence of metal particles are confirmed.

BET: The BET surface area decreases with the increase of pyrolysis temperature.

HRTEM: Graphitic carbon containing carbon nano fibers/tubes are formed during pyrolysis in the presence of cobalt.

ORR: The CCCS showed an onset potential of 0.85 V vs. RHE and well-defined kinetic and mass transfer regions. The peroxide formation is <2%.

Technical Accomplishments
Pt/CCCS and Pt*/CCCS Catalyst Development

Platinum Deposition (Pt/CCCS)

- CCCS - High surface area support
- No Surface Modification
- With Surface Modification

Heat-treatment (Pt*/CCCS)

- Conventional Pyrolysis (800°C/0.5h)
- Modified Pyrolysis (800°C/1h)

HIGHLIGHT:

- Pt deposition: Uniform particle distribution with an average particle size of 2-3 nm is achieved with the USC developed modified polyol process.
- Heat-treatment: Normal heat-treatment results in 10 to 20 nm particles.
- USC-developed process yields uniform particle size distribution with ~3.4 nm Pt* catalyst particles.

Technical Accomplishments: Catalyst Development

Pt*/CCCS Catalyst Synthesis: Effect of Heat-treatment

800°C, N₂

<table>
<thead>
<tr>
<th>Heat treatment time (h)</th>
<th>Pt peak (deg.)</th>
<th>PtCo peak (deg.)</th>
<th>Particle size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>67.3</td>
<td>--</td>
<td>2.5</td>
</tr>
<tr>
<td>0.5</td>
<td>67.9</td>
<td>69.4</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>67.8</td>
<td>69.5</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>69.4</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>--</td>
<td>69.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

HIGHLIGHT:

- XRD shows the presence of Pt and PtCo phases after 0.5 h heat treatment.
- Single-phase Pt* is formed after 2 h.
- The shift in 2θ can be varied by adjusting the heat treatment time.
- Line scan confirms the existence of Co in the core and a Pt-shell thickness of 0.5-0.8 nm (Core-shell structure).

Mathematical model was used to optimize the Co diffusion time, pyrolysis temp., and Pt/Co ratio.

Pt* = Compressive Pt Lattice Catalyst
Technical Accomplishments: 30% Pt*/CCCS Catalyst Development
Reproducibility of Stability of Mass Activity under 0.6-1.0 V Cycling

HIGHLIGHT:
- All three MEAs of the Pt*/CCCS catalyst show very high mass activity (0.4~0.44 A/mg Pt) at 0.9 V_{iR-free}.
- 43~53% loss in mass activity for Pt*/CCCS catalyst (in three 25 cm² MEAs) with final mass activities of 0.19~0.25 A/mg_{Pt} after 30k cycles (0.6-1.0 V).

Pt* = Compressive Pt Lattice Catalyst
Technical Accomplishments: 30% Pt*/CCCS Catalyst Development Reproducibility of H₂-air performance under 0.6-1.0 V Cycling

HIGHLIGHT:
- The Pt*/CCCS catalyst tested in three 25 cm² MEAs showed stable H₂-air fuel cell performance with only 40~46 mV (iR-free) and 31~34 mV (cell voltage) loss at 800 mA/cm² after 30,000 cycles (0.6 and 1.0 V). Pt* = Compressive Pt Lattice Catalyst
Technical Accomplishments
Catalyst Durability of Commercial Pt/C and Pt₃Co/C Catalysts

Mass Activity

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Initial</th>
<th>10k cycles</th>
<th>20k cycles</th>
<th>30k cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Pt₃Co/C</td>
<td>0.116</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOE Accelerated Stress Test (AST) Protocol
- 0.6 ~ 1.0 V, 50mV/s,
- 30k cycles, H₂/N₂, 80°C,
- 100 % RH, single cell
- 25cm²

Pt mass activity: H₂/O₂,
(2/9.5 stoic.), 100% RH,
150 kPa abs.
H₂/air: 2.0/2.0 stoic,
50% RH, 80°C, 170 kPa back pressure

HIGHLIGHT:

Commercial Pt₃Co/C catalyst
- Showed 68.5% loss of mass activity after 30k cycles.
- No activity at 0.8 A/cm² after 30k potential cycles between 0.6 and 1.0 V.

Commercial Pt/C catalyst
- Showed 67% loss of mass activity (not shown here).
- No activity at 0.8 A/cm² after 30k potential cycles between 0.6 and 1.0 V.

Technical Accomplishments
Development of A-CCS Support, Pt/A-CCS and Pt*/A-CCS Catalysts

Porous carbon support is susceptible to corrosion under PEMFC fuel cell operating conditions:
- High water content; Low pH (<1); High temperature (70-80°C); High oxygen concentration
- Very high potential (1.2~1.5 V vs. RHE) at the cathode interface during start-up/shutdown cycles and fuel starvation.

- Carbon oxidation occurs according to:
 \[C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^- \]
 \[(E^o = 0.207 \text{ V vs. NHE at 25 ℃}) \]

- Carbon oxidation results in:
 - Increase in hydrophilicity – affects water removal (increased mass transport losses)
 - Decrease in catalyst layer thickness (increase in cell resistance)

Pt catalyst accelerates the carbon corrosion rate
- Porosity and pore-size distribution
- Hydrophobic/hydrophilic property
- Surface functional group to enhance Pt-support interaction

Carbon Black
- Purification
- Stabilization
- Active group formation
- Activated carbon composite support (A-CCS)

Carbon surface modification
- Metal-catalyzed pyrolysis

A-CCS – Low surface area support

- **Carbon black**
 - (i) Removal of amorphous carbon
 - (ii) Increase of hydrophobicity
- **This methodology results in enhancement of support stability**

- **Metal-catalyzed pyrolysis** to increase the number of active sites

Pt* = Compressive Pt Lattice Catalyst
When the cathode reactant is sufficiently supplied for ORR at 100% RH, the Pt/A-CCS catalyst maintains its initial activity after 30k cycles. However, the performance loss of the commercial Pt/C catalyst is much more significant during the AST.

The better stability is due to (i) strong π-bond act as anchoring sites; (ii) larger particle size between 3 to 4 nm compared to that of ~2 nm for Pt/C; (iii) surface nitrogen group to enhance better Pt to carbon interaction.

After 30k cycles, the mass activity of Pt/A-CCS decreases from 0.267 to 0.133 A/mgPGM, which is 50% loss, while the final mass activity of Pt/C is 0.08 A/mgPt after 30k cycles (67% loss).

The ECSA of commercial catalyst experienced significant loss from 65 to 13 m²/g while that of Pt/A-CCS is much more stable during the cycling test with only 41% loss (from 39 to 23 m²/g⁻¹).

HIGHLIGHT:
- When the cathode reactant is sufficiently supplied for ORR at 100% RH, the Pt/A-CCS catalyst maintains its initial activity after 30k cycles. However, the performance loss of the commercial Pt/C catalyst is much more significant during the AST.
- The better stability is due to (i) strong π-bond act as anchoring sites; (ii) larger particle size between 3 to 4 nm compared to that of ~2 nm for Pt/C; (iii) surface nitrogen group to enhance better Pt to carbon interaction.
- After 30k cycles, the mass activity of Pt/A-CCS decreases from 0.267 to 0.133 A/mgPGM, which is 50% loss, while the final mass activity of Pt/C is 0.08 A/mgPt after 30k cycles (67% loss).
- The ECSA of commercial catalyst experienced significant loss from 65 to 13 m²/g while that of Pt/A-CCS is much more stable during the cycling test with only 41% loss (from 39 to 23 m²/g⁻¹).
Technical Accomplishments: 30% Pt/A-CCS Catalyst Development

Catalyst Durability (0.6-1.0 V Cycling)

Comparison of H₂-air polarization curves of Pt/A-CCS and commercial Pt/C

HIGHLIGHT:
- The Pt/A-CCS catalyst exhibits potential loss of 72 mV at 0.8 A/cm² after 30k cycles.
- The maximum power density loss is 26% (from 944 to 703 mW/cm²).
- Commercial Pt/C showed no activity at 0.8 A/cm² and the maximum power density drops from 746 to 274 mW/cm² (63% loss) due to Pt dissolution and agglomeration during cycling.
- Surface nitrogen group enhances better Pt to carbon interaction in Pt/A-CCS.
- Higher loss (>50 mV) in open circuit potential is observed for commercial Pt/C when compared with Pt/A-CCS (7 mV) after 30k cycles.

DOE Accelerated Stress Test Protocol
- 0.6 ~ 1.0 V, 50mV/s,
- 30k cycles, H₂/N₂,
- 80°C, 100 % RH,
- single cell 25cm²

A-CCS – Low surface area support

Technical Accomplishments:

30% Pt/A-CCS Catalyst Development

Catalyst Durability (0.6-1.0 V Cycling)

Comparison of H₂-air polarization curves of Pt/A-CCS and commercial Pt/C
Technical Accomplishments: 30% Pt/A-CCS Catalyst Development

Support Stability (1.2 V potential holding)

HIGHLIGHT:
- After 400h holding, the mass activity decreases from 0.25 to 0.17 A/mgPt (32% loss) while the commercial Pt/C shows 72% loss.
- Pt/A-CCS maintained about 70% of its initial ECSA after 400 h and the commercial Pt/C catalyst showed 70% ECSA loss after 48 h.
- The results clearly indicates that Pt is safe on the A-CCS support, but not on the commercial carbon. The amorphous property as well as the high surface area and hydrophilicity of commercial carbon increases the corrosion rate at high potential.
- 27 mV loss was observed on the Pt/A CCS catalyst at 0.8 A/cm² after 400h while the commercial 46% Pt/C catalyst which uses high surface area carbon as support showed no activity after 48 h.
- The hydrophobicity (shown in the photograph) also exhibits large difference between commercial ketjen black® (extreme left) and A-CCS (extreme right). Better water removal not only increases the maximum power density at mass transfer region, but also slow down the carbon corrosion.

DOE AST Protocol
1.2 V holding for 400 hours, H₂/N₂, 80°C, 100 % RH, 150 kPa, single cell 25cm²
Technical Accomplishments: **Support Stability (1.0 to 1.5 V potential cycling)**

Comparison of H₂-air polarization curves of Pt/A-CCS, Pt/290G, and commercial Pt/C Catalysts

(290G – Commercial carbon support)

HIGHLIGHT:
- 30% Pt/A-CCS catalyst shows excellent support stability (only 36 mV loss after 5k cycles)
- 30% Pt/290G keeps support stability until 2000 cycles but shows rapid decay between 2k ~ 5k cycles.
- 30% commercial Pt/C shows very poor support stability only after 1000 cycles.
Technical Accomplishments: 30% Pt*/A-CCS Catalyst Development (Support Stability 1.0 to 1.5 V potential cycling)

XRD: Effect of Pt to Co ratio

- Pt:Co=2:1
 - 800°C, 2h
 - Pt(111) peak shift: 69.48°

- Pt:Co=1:1
 - 70.06°

- Pt
 - 67.67°

Relative intensity (a.u.)

θ (deg.) 20 30 40 50 60 70 80 90

Current density (mA/cm²)

Voltage (V)

- 30% Pt*/A-CCS
 - Initial
 - 5k cycles

- 21 m² g⁻¹ Pt
- 16 m² g⁻¹ Pt

25% ECSA loss

Pt loading: A 0.1 mgPt/cm², C 0.1 mgPt/cm²
Anode: H₂ 200 ccm, Cathode: N₂ 75 ccm
Cell temp.: 80 °C, No back pressure, RH 100%
Scan rate: 20 mV/S, Nafion®212

HIGHLIGHT:

- XRD: The Pt(111) peak shift is higher for Pt:Co =1:1.
- The catalyst showed initial mass activity of 0.41 A/mgPGM and 0.192 A/mgPGM after 5k cycles (53% loss).
- H₂-air: The initial current density at 0.6 V_{IR-free} is 1.4 A/cm². After 5k cycles, the current density increased to 1.45 A/cm².
- H₂-air: The catalyst showed an increase of ~10 mV (IR-free) and 29 mV (cell voltage) at 1500 mA/cm² after 5k cycles
- ECSA: The ECSA loss is 25% after 5k cycles (decreased from 21 to 16 m²/gPt).

DOE AST Protocol
1.0 ~ 1.5 V, 500mV/s, 5k cycles, H₂/N₂, 80°C, 100 % RH, single cell 25cm²

Pt* = Compressive Pt Lattice Catalyst
Technical Accomplishments

30% Pt*/A-CCS Catalyst Development

Catalyst Durability (0.6-1.0 V Cycling)

HIGHLIGHT:

- **Mass activity:** The 30% Pt*/A-CCS catalyst showed initial mass activity of 0.41 A/mg\textsubscript{Pt} and 46% loss after 30k cycles.

- **H\textsubscript{2}-O\textsubscript{2}**:
 - The 30% Pt*/A-CCS catalyst showed initial current density of 2.5 A/cm2 at 0.7 V\textsubscript{\textit{iR}}-free.

DOE AST Protocol

- 0.6 ~ 1.0 V, 50mV/s, 30k cycles, H\textsubscript{2}/N\textsubscript{2}, 80\textdegree C, 100 % RH, single cell 25cm2

\textit{Pt*} = Compressive Pt Lattice Catalyst
Technical Accomplishments **30% Pt*/A-CCS Catalyst Development**

Catalyst Durability (0.6-1.0 V Cycling)

HIGHLIGHT:
- **H₂-air:** The 30% Pt*/A-CCS catalyst showed an initial current density of 1.5 A/cm² at 0.6 V\(_{\text{ir-free}}\). The catalyst showed **35 mV (ir-free) loss and 33 mV (cell voltage) loss at 0.8 A/cm²** after 30k cycles (0.6 and 1.0 V).
- The **rated power density is 0.19 g\(_{\text{PGM}}\)/kW.**
- **ECSA:** The **ECSA loss is 25%** (decreased from 24.1 m²/g\(_{\text{Pt}}\) to 18 m²/g\(_{\text{Pt}}\))

Pt* = Compressive Pt Lattice Catalyst
Summary

30% Pt*/CCCS Catalyst

- For the first time, at USC, we have achieved initial mass activity of \(0.44 \text{ A/mg}_{\text{PGM}}\) and loss of mass activity of 43% after 30k cycles (0.6-1.0 V) (2017 DOE target is ≥40%).
- Accomplished potential loss of 40 mV after 30k cycles (0.6-1.0 V) at 0.8 A/cm\(^2\).
- Accomplished 32% ECSA loss after 30k cycles (0.6-1.0 V).
- Accomplished (rated) initial power density of 0.23 g\(_{\text{PGM}}\)/kW.

30% Pt/A-CCS Catalyst

- Accomplished initial mass activity of 0.26 A/mg\(_{\text{PGM}}\) and loss of mass activity of 50% after 30k cycles (0.6-1.0 V).
- Accomplished potential loss of 72 mV at 0.8 A/cm\(^2\) after 30k cycles (0.6-1.0 V).
- Accomplished 40% ECSA loss after 30k cycles (0.6-1.0 V).
- For the first time, we have achieved only 27 mV (at 0.8 A/cm\(^2\)) loss after 400 h holding at 1.2 V. At more severe conditions, such as potential cycling between 1.0-1.5 V (5,000 cycles), the Pt/A-CCS catalyst maintained its activity in H\(_2\)/air and showed 36 mV loss (at 1.5 A/cm\(^2\)) after 5k cycles (1.0-1.5 V).
- Accomplished 41% mass activity loss and 45% ECSA loss after 5k cycles (1.0-1.5 V).
- Accomplished (rated) initial power density of 0.18 g\(_{\text{PGM}}\)/kW.

30% Pt*/A-CCS Catalyst

- Accomplished initial mass activity of 0.41 A/mg\(_{\text{PGM}}\) and loss of mass activity of 46% after 30k cycles (0.6-1.0 V).
- Accomplished potential loss of 35 mV (iR-free) and 33 mV (cell voltage) loss at 0.8 A/cm\(^2\) after 30k cycles (0.6 and 1.0 V).
- Accomplished 25% ECSA loss after 30k cycles (0.6 and 1.0 V).
- The catalyst showed a gain of ~10 mV cell potential at 1500 mA/cm\(^2\) after 5k cycles (1.0-1.5 V).
- Accomplished 53% mass activity loss and 25% ECSA loss after 5k cycles (1.0-1.5 V).
- Accomplished (rated) initial power density of 0.19 g\(_{\text{PGM}}\)/kW.

Pt* = Compressive Pt Lattice Catalyst
Future Work (May-Dec 2015)

- We synthesized Pt*/A-CCS catalysts with optimized Pt-Co structures which showed high initial mass activity (0.41 A/mg$_{\text{PGM}}$), stability of mass activity (46% loss after 30k cycles), high H$_2$-air performance (1.5 A/cm2 at 0.6 V$_{iR\text{-free}}$), and high rated power density (0.19 g$_{\text{PGM}}$/kW).

- Our studies showed formation of ordered tetragonal Pt-Co phase, while the disorder to ordered Pt-Co phase increased with the increase in pyrolysis temperature. The catalyst performance was found to depend on the disordered/ordered Pt-Co structures (Pt*/A-CCS).
 - Detailed studies will be carried out to optimize the performance of Pt*/A-CCS with the structural properties of Co-doped Pt.
 - Structure-property performance will be evaluated for different Pt-Co ratios which result in structures with different degree of formation of compressive Pt-lattice structure.
 - Mathematical model developed at USC and European Commission will be used to optimize the ratio of ordered and disordered Pt-Co phases.

- Further studies will be carried out to increase the H$_2$-air fuel cell performance of Pt/A-CCS and Pt*/A-CCS catalysts by controlling the hydrophilic/hydrophobic property of A-CCS.
 - The goal is to eliminate the eventual flooding of the support under 1.0-1.5 V cycling.

- Selection of a best performing catalyst to achieve 2017 DOE technical targets for electrocatalyst and catalyst support.
Future Work (May-Dec 2015)

- Reproducibility studies of selected catalyst in 25 and 50 cm² MEAs.
- High-volume production:
 - Optimization of high volume production procedures for A-CCS support and Pt/A-CCS and Pt*/A-CCS catalysts.
- Cost-reduction:
 - Further decrease of PGM loading
 - Cost-effective synthesis procedures by eliminating the chemical leaching process during Pt*/A-CCS synthesis.

Deliverables

- Supply of MEAs for independent evaluation at NREL (From May 2015 – Dec 2015).
Summary of Accomplishment of 30% Pt*/CCCS Cathode Catalyst (Phase II)

Metric	**Units**	**Status**	**Commercial Pt/C**	**2017 DOE target**

Initial Mass Activity (Milestone 2)

| Initial Mass activity | A/mg\text{PGM} @ 900 mV\text{ir-free} | **0.44** | 0.18 | \geq \text{0.44} |

Catalyst Stability (0.6-1.0 V cycling) (Milestone 3)

Loss in catalyst activity	% loss after 30k cycles	**43\%** (0.25 A/mg\text{PGM})	68\%	\leq 40\%
Loss in ECSA	% loss after 30k cycles	**32\%** (75 \rightarrow 64 m^2/g\text{Pt})	80\%	\leq 40\%
Potential loss @ 800 mA/cm^2	mV loss after 30k cycles	**40 mV**	No Activity	\leq 30 mV

PGM Content and PGM Loading (Milestone 4)

| PGM total content (Power Density) | g_{PGM}/kW (rated) | **0.23** | 0.3 | \leq 0.125 |
| PGM total loading | mg_{PGM}/cm^2_{geo} | **0.2** | 0.2 | \leq 0.125 |

Met the 2017 DOE Targets

Pt* = Compressive Pt Lattice Catalyst
Summary of Accomplishment of 30% Pt/A-CCS Cathode Catalyst (Phase II)

Initial Mass Activity (Milestone 2)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>Status April 30, 2015</th>
<th>Commercial Pt/C</th>
<th>2017 DOE target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Mass activity</td>
<td>A/mg<sub>PGM</sub> @ 900 mV<sub>iR-free</sub></td>
<td>0.26</td>
<td>0.18</td>
<td>≥0.44</td>
</tr>
</tbody>
</table>

Catalyst Stability (0.6-1.0 V cycling) (Milestone 3)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>Status April 30, 2015</th>
<th>Commercial Pt/C</th>
<th>2017 DOE target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss in catalyst activity</td>
<td>% loss after 30k cycles</td>
<td>50% (0.13 A/mg<sub>PGM</sub>)</td>
<td>68%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Loss in ECSA</td>
<td>% loss after 30k cycles</td>
<td>40% (39 → 23 m<sup>2</sup>/g<sub>Pt</sub>)</td>
<td>80%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Potential loss @ 800 mA/cm<sup>2</sup></td>
<td>mV loss after 30k cycles</td>
<td>72 mV</td>
<td>No Activity</td>
<td>≤30 mV</td>
</tr>
</tbody>
</table>

Support Stability (1.2 V holding) (Milestone 3)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>Status April 30, 2015</th>
<th>Commercial Pt/C</th>
<th>2017 DOE target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss in catalyst activity</td>
<td>% loss after 400 h</td>
<td>32% (0.17 A/mg<sub>PGM</sub>)</td>
<td>72%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Loss in ECSA</td>
<td>% loss after 400 h</td>
<td>6% (39 → 37 m<sup>2</sup>/g<sub>Pt</sub>)</td>
<td>71%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Potential loss @ 800 mA/cm<sup>2</sup></td>
<td>mV loss after 400 h</td>
<td>27 mV</td>
<td>No Activity</td>
<td>≤30 mV</td>
</tr>
</tbody>
</table>

Support Stability (1.0-1.5 V cycling) (New Test Performed)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>Status April 30, 2015</th>
<th>Commercial Pt/C</th>
<th>2017 DOE target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss in catalyst activity</td>
<td>% loss after 5k cycles</td>
<td>41% (0.15 A/mg<sub>PGM</sub>)</td>
<td>*</td>
<td>≤40%</td>
</tr>
<tr>
<td>Loss in ECSA</td>
<td>% loss after 5k cycles</td>
<td>45% (39 → 21 m<sup>2</sup>/g<sub>Pt</sub>)</td>
<td>92%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Potential loss @ 1500 mA/cm<sup>2</sup></td>
<td>mV loss after 5k cycles</td>
<td>36 mV</td>
<td>No Activity</td>
<td>≤30 mV</td>
</tr>
</tbody>
</table>

PGM Content and PGM Loading (Milestone 4)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>Status April 30, 2015</th>
<th>Commercial Pt/C</th>
<th>2017 DOE target</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM total content (Power Density)</td>
<td>g<sub>PGM</sub>/kW (rated)</td>
<td>0.18</td>
<td>0.3</td>
<td>≤0.125</td>
</tr>
<tr>
<td>PGM total loading</td>
<td>mg<sub>PGM</sub>/cm<sup>2</sup> <sub>geo</sub></td>
<td>0.2</td>
<td>0.2</td>
<td>≤0.125</td>
</tr>
</tbody>
</table>

*Very low final mass activity – not comparable

Met the 2017 DOE Targets
Summary of Accomplishment of 30% Pt*/A-CCS Cathode Catalyst (Phase II)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Units</th>
<th>Status April 30, 2015</th>
<th>Commercial Pt/C</th>
<th>2017 DOE target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Mass Activity (Milestone 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Mass activity</td>
<td>A/mg<sub>PGM</sub> @ 900 mV<sub>ir-free</sub></td>
<td>0.41</td>
<td>0.18</td>
<td>≥0.44</td>
</tr>
<tr>
<td>Catalyst Stability (0.6-1.0 V cycling) (Milestone 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss in catalyst activity</td>
<td>% loss after 30k cycles</td>
<td>46% (0.22 A/mg<sub>PGM</sub>)</td>
<td>68%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Loss in ECSA</td>
<td>% loss after 30k cycles</td>
<td>25% (24 → 18 m²/g<sub>Pt</sub>)</td>
<td>80%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Potential loss @ 800 mA/cm²</td>
<td>mV loss after 30k cycles</td>
<td>35 mV</td>
<td>No Activity</td>
<td>≤30 mV</td>
</tr>
<tr>
<td>Support Stability (1.0-1.5 V cycling) (New Test Performed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss in catalyst activity</td>
<td>% loss after 5k cycles</td>
<td>53%* (0.19 A/mg<sub>PGM</sub>)</td>
<td>**</td>
<td>≤40%</td>
</tr>
<tr>
<td>Loss in ECSA</td>
<td>% loss after 5k cycles</td>
<td>25% (21 → 16 m²/g<sub>Pt</sub>)</td>
<td>92%</td>
<td>≤40%</td>
</tr>
<tr>
<td>Potential loss @ 1500 mA/cm²</td>
<td>mV loss after 5k cycles</td>
<td>No loss (10 mV gain)</td>
<td>No Activity</td>
<td>≤30 mV</td>
</tr>
<tr>
<td>PGM Content and PGM Loading (Milestone 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGM total content (Power Density)</td>
<td>g<sub>PGM</sub>/kW (rated)</td>
<td>0.19</td>
<td>0.3</td>
<td>≤0.125</td>
</tr>
<tr>
<td>PGM total loading</td>
<td>mg<sub>PGM</sub>/cm²<sub>geo</sub></td>
<td>0.2</td>
<td>0.2</td>
<td>≤0.125</td>
</tr>
</tbody>
</table>

Met the 2017 DOE Targets

* The loss is due to high RH and support oxidation which caused water flooding under H₂/O₂ when subjected to 1.0-1.5 V cycling.

**Very low final mass activity – not comparable

Pt* = Compressive Pt Lattice Catalyst
Collaborations

European Commission (DG Joint Research Centre, Institute for Energy and Transport Cleaner Energy Unit): Mathematical model development for Co-diffusion and compressive Pt-lattice catalyst formation (**Dr. Akos Kriston**).

NREL (Subcontractor): Evaluation of catalyst durability and support stability of USC catalysts according to Fuel Cell Tech Committee Accelerated Stress Test Protocol (May – Dec 2015)

- **Rudiger Laufhutte** (University of Illinois, Urbana-Champaign): ICP analysis of Pt*/CCCS and Pt*/A-CCS catalysts.
- **Alan Nicholls** (University of Illinois, Chicago): HRTEM & XEDS mapping.
- **Lax Saraf & Haijun Qian** (Clemson University): Transmission Electron Microscopy analysis.
- **EM Center** (University of South Carolina): HR-TEM analysis
- **Scribner Associates**: Design and construction of fuel cell test stations according to USC requirements.
- **Fuel Cell Technologies**: Design and construction of single cells according to USC specifications.

Pt* = Compressive Pt Lattice Catalyst
Team Members who contributed to this presentation

University of South Carolina
Branko N. Popov, Tae-keun Kim, Won-suk Jung, Xie Tianyuan, Akos Kriston, and Prabhu Ganesan

Acknowledgement

U.S. Department of Energy

4. Analyzing the effect of Ultra-Low Pt Loading on Mass and Specific Activity of PEM Fuel Cells, Akos Kriston, Tianyuan Xie, Taekeun Kim, Won Suk Jung, David Gamliel, Brian Murphy Prabhu Ganesan, Branko N. Popov, 222nd ECS Meeting, Honolulu, HI, October 7-12, 2012.
5. Development of Ultra-Low Pt Alloy Cathode Catalyst for PEM Fuel Cells, Branko N. Popov, Tianyuan Xie, Taekeun Kim, Won-suk Jung, Akos Kriston Brian Murphy, David Gamliel and Prabhu Ganesan, 222nd ECS Meeting, Honolulu, HI, October 7-12, 2012.
6. Development of Highly Active Pt\textsubscript{2}Ni/CCC Catalyst for PEM Fuel Cell, Tianyuan Xie, Won Suk Jung, Taekeun Kim, Kriston Akos Prabhu Ganesan and Branko N. Popov, 222nd ECS Meeting, Honolulu, HI, October 7-12, 2012.
7. Development of Hybrid Cathode Catalyst for PEM Fuel Cells, Taekeun Kim, Won Suk Jung, Tianyuan Xie, Akos Kriston, Prabhu Ganesan, David Gamliel, Brian Murphy and Branko N. Popov, 222nd ECS Meeting, Honolulu, HI, October 7-12, 2012.
Response to Reviewers’ Comments
The accomplishments of this project are generally considered good, based on the performance data provided. The PI should address the following questions regarding the achievements:

Comment 1: Catalytic activity of the “support” measured by RDE was reported. The PI should have also included the “support” activity study measured in MEA at the single-cell level.

Response: The results of H$_2$-O$_2$ fuel cell performance of various CCCS are presented in Fig. 1.
Response to Reviewers’ Comments

Comment 2: The PI demonstrated an excellent improvement in stability against commercial Pt/C material. Representative data of the commercial Pt/C catalyst/MEA should also be included in the presentation for comparison.

Response: As suggested by the reviewer, the H₂-air and H₂-O₂ polarization curves of commercial Pt/C and commercial Pt₃Co/graphitic carbon are included in this presentation. Please refer slide number 11.

Comment 3: The catalyst demonstrated good stability under a relatively mild cycling condition (0.6–1 V). For the Pt-based catalyst, a more severe aging condition should have been used.

Response: A more severe aging conditions such as potential cycling between 1.0 and 1.5 V (5,000 cycles) and potential holding at 1.2 V (400 h) have been applied to the Pt/A-CCS and Pt*/A-CCS catalysts. Please refer slide numbers 15-17.