2015 DOE Hydrogen and Fuel Cells Program Review

Development of Ultra-low Doped-Pt Cathode Catalysts for PEM Fuel Cells (PHASE II)

P. I.: Branko N. Popov Center for Electrochemical Engineering University of South Carolina Columbia SC 29208.

Washington DC June 09, 2015

Project ID # FC088

This presentation does not contain any proprietary, confidential, or otherwise restricted information

1

Overview

Start date: June 2010

- End date: December 2015 (No-cost Extension June-Dec 2015)
- Percent complete: 95%

Budget

- DOE Share: \$3,800,000
- ➢ <u>USC Cost Share</u> : \$950,000
- > Total Project Cost: \$4,750,000
- Total DOE Funds Spent*: \$3,192,283

*as of 03/31/15

Barriers

A. Durability

 \geq

- Retain kinetic activity and high current density performance in H₂/air after potential holding (support durability) and potential cycling (catalyst durability) experiments.
- B. Cost
 - Decrease in PGM content
 - Cost effective synthesis procedures

C. Performance

Obtain high current density performance in H₂/air and maintain the power density.

DUE lechnical largets				
Electrocatalyst/MEA	2017 Targets			
PGM loading	0.125 mg/cm ²			
Initial mass activity	≥0.44 A/mg _{PGM}			
Mass activity and ECSA loss after 30k cycles (0.6-1.0V) (Catalyst durability)	≤ 40%			
Potential loss after 30k cycles (0.6-1.0V) (Catalyst durability)	≤30 mV			
Mass activity and ECSA loss after 400 h (1.2 V) (Support stability)	≤30 mV			
Potential loss after 400 h (1.2 V) (Support stability)	≤30 mV			
Mass activity and ECSA loss after 5k cycles (1.0-1.5 V) (Support stability)	≤ 40%			
Potential loss after 5k cycles (1.0-1.5 V) (Support stability)	≤30 mV			
 Project Lead University of South Carolina (USC) 				
Subcontractor				
National Renewable Energy Laboratory (NREL)				
Additional Interaction	IS			
Rudiger Laufhutte (Univ. Illinois, Urbana Champaign)				

DOF Technical Terreta

- Dr. Lax Saraf (Clemson University)
- > Dr. Alan Nicholls (Univ. Illinois, Chicago)
- Electron Microscopy Center, USC

Relevance

- Develop unique hybrid cathode catalyst (HCC) through interaction of highly active and stable Pt and compressive Pt-lattice catalyst (Pt*) with catalytically active and highly stable <u>carbon composite catalyst support (CCCS)</u> and <u>activated carbon composite support (A-CCS)</u>.
- Enhance the activity of HCC by increasing the synergistic effect of catalytic active sites present in the supports and those in Pt or Pt^{*} catalyst.
- □ The specific objectives are to:
 - Perform optimization studies to develop two catalyst supports (CCCS and A-CCS) with high kinetic activity and stability.
 - Estimate the role of BET surface area, porosity, pore-size, pore-size distribution and hydrophilic/hydrophobic properties on the support stability.
- Synthesize low-PGM cathode catalyst for automotive application by decreasing the PGM loading while simultaneously increasing the catalytic activity and stability of CCCS and A-CCS and the activity of Pt^{*}.
- Develop low cost procedure to synthesize the following hybrid cathode catalysts:
 - Pt/CCCS
 - Pt*/CCCS
 - Pt/A-CCS
 - Pt*/A-CCS

Develop a low cost catalyst with optimized mass activity, stability of mass activity, initial high current performance under H_2 /air (power density), catalyst and support stability able to meet 2017 DOE targets.

Approach

□ The technology is based on a two-step USC-patented process to synthesize highly active and stable ultra-low PGM hybrid cathode catalyst (HCC).

Step I - Synthesis of CCCS and A-CCS supports

- The following major constraints were addressed when developing cathode catalyst supports for PEMFC for automotive applications:
 - Chemically and electrochemically stable at low pH and high temperature.
 - An onset potential and kinetic activity for ORR similar to that of the platinum catalyst.
- To accomplish these requirements CCCS and A-CCS were synthesized with optimized:
 - BET surface area, porosity, pore size and pore size distribution
 - Hydrophilic/hydrophobic ratio
 - Structural properties (amorphous/crystalline ratio).
 - Number of catalytic active sites through metal catalyzed pyrolysis.
 - Pt-support interaction by inclusion of active surface functional groups
 - Transition metal necessary for the formation of Pt^{*} is encapsulated in the graphitic carbon structure.

Step II - Synthesis of compressive Pt-lattice catalyst

- Pt-lattice catalyst was synthesized through:
 - USC heating procedure that controls the particle size during pyrolysis.
 - Monolayers of Pt* were formed by diffusing Co atoms into Pt.
- Mathematical model was used to optimize:
 - The Co diffusion time
 - The pyrolysis temperature
 - Pt/Co stoichiometric ratio

Pt* = Compressive Pt Lattice Catalyst

Project Timeline (As per Revised SOPO Dated 01/23/2014)

Technical Accomplishments Development of CCC Support

HIGHLIGHT:

CCCS - High surface area support

6

<u>XRD:</u> The degree of graphitization increases with the increase in the pyrolysis temperature. Presence of metal particles are confirmed.

<u>BET:</u> The BET surface area decreases with the increase of pyrolysis temperature.

<u>HRTEM:</u> Graphitic carbon containing carbon nano fibers/tubes are formed during pyrolysis in the presence of cobalt. <u>ORR:</u> The CCCS showed an onset potential of 0.85 V vs. RHE and well-defined kinetic and mass transfer regions. The peroxide formation is <2%. Popov et al. J. Power Sources, 273, (2015) 761-774.

Technical Accomplishments Pt/CCCS and Pt*/CCCS Catalyst Development Platinum Deposition (Pt/CCCS) Heat-treatment (Pt*/CCCS) **CCCS** - High surface **CCC** support area support With Surface **No Surface** Modified Conventional **Modification Modification Pyrolysis Pyrolysis** (800°C/0.5h) $(800^{\circ}C/1h)$ **Fresh catalyst** Pt deposited on CCCS Non-uniform Pt deposition **Uniform Pt deposition** 3~3.5 nm Particles **10-20 nm Particles** 30% Pt/CCCS 50 **XRD HIGHLIGHT:** d_{Pt} = 2~3 nm 40 Pt deposition: Uniform particle distribution with an (%) 6% Pt Liedneucy (30 average particle size of 2-3 nm is achieved with the 40% Pt USC developed modified polyol process. Heat-treatment: Normal heat-treatment results in 10

to 20 nm particles.
USC-developed process yields uniform particle size distribution with ~3.4 nm Pt* catalyst particles.

Intensity (a.u.)

20

30

40

50

 2θ (deg.)

60

70

80

90

Popov et al. J. Electrochem. Soc. 161 (2014) F1489. Pt* = Compressive Pt Lattice Catalyst

Technical Accomplishments: Catalyst Development Pt*/CCCS Catalyst Synthesis: Effect of Heat-treatment area support

≯к

Length / µm

Pt shell thickness: 0.75 nm

Pt* = Compressive Pt Lattice Catalyst Popov et al. Electrochim. Acta, 167 (2015) 1-12.

8

structure).

Technical Accomplishments: 30% Pt*/CCCS Catalyst Development Reproducibility of Stability of Mass Activity under 0.6-1.0 V Cycling

• Popov et al. J. Power Sources, 243 (2013) 958-963.

Pt* = Compressive Pt Lattice Catalyst

9

Technical Accomplishments: 30% Pt*/CCCS Catalyst Development Reproducibility of H₂-air performance under 0.6-1.0 V Cycling

HIGHLIGHT:

The Pt*/CCCS catalyst tested in <u>three 25 cm² MEAs</u> showed stable H₂-air fuel cell performance with only <u>40~46 mV (iR-free) and 31~34 mV</u> (cell voltage) loss at 800 mA/cm² after 30,000 cycles (0.6 and 1.0 V). Pt* = Compressive Pt Lattice Catalyst

Technical Accomplishments

Catalyst Durability of Commercial Pt/C and Pt₃Co/C Catalysts

Popov et al. Electrochim. Acta, 167 (2015) 1-12.

Technical Accomplishments

Development of A-CCS Support, Pt/A-CCS and Pt*/A-CCS Catalysts

Porous carbon support is susceptible to corrosion under PEMFC fuel cell operating conditions:

- High water content; Low pH (<1); High temperature (70-80°C); High oxygen concentration</p>
- Very high potential (1.2~1.5 V vs. RHE) at the cathode interface during start-up/shutdown cycles and fuel starvation.
- Carbon oxidation occurs according to:

(E° = 0.207 V vs. NHE at 25 °C)

- Carbon oxidation results in:
 - Increase in hydrophilicity affects water removal (increased mass transport losses)
 - Decrease in catalyst layer thickness (increase in cell resistance)

Pt catalyst accelerates the carbon corrosion rate

 $C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^-$

- Porosity and pore-size distribution
- Hydrophobic/hydrophilic property
- Surface functional group to enhance Pt-support interaction

Technical Accomplishments: 30% Pt/A-CCS Catalyst Development

Catalyst Durability (0.6-1.0 V Cycling)

Technical Accomplishments: 30% Pt/A-CCS Catalyst Development

Catalyst Durability (0.6-1.0 V Cycling)

Technical Accomplishments: 30% Pt/A-CCS Catalyst Development Support Stability (1.2 V potential holding)

Technical Accomplishments: Support Stability (1.0 to 1.5 V potential cycling) Comparison of H₂-air polarization curves of Pt/A-CCS, Pt/290G, and commercial (290G – Commercial carbon support) **Pt/C Catalysts** 1.0 S 101.0 30% Pt/A-CCS - Initial 30% commercial Pt/C iR-corrected cell voltage (V) 30% Pt/290G − ■ − Initial −■− Initial R corrected cell voltage (V) - 2,000 corrected cell voltage <u>--- 1000</u> −□− 1000 - 5,000 0.8 0.8 0.8 2000 2000 0.6 0.6 0.6 H_/air stoic: 2/2 H,/air stoic: 2/2 170 KPa backpressure 170 KPa backpressure H_/air stoic: 2/2 AST: 80°C. 40% RH 80°C. 40% RH 0.4 170 KPa backpressure 5,000 cycles (1.0 to 1.5V) 04 Anode: 0.1 mg_₽/cm² 0.4 Anode: 0.1 mg_/cm² 500 mV/s Cathode: 0.1 mgp/cm² H₂-air Anode: 0.1 mg_/cm² H₂-air H₂-air Cathode: 0.1 mg_/cm² Membrane: Nafion® 212 0.2 0.2 - Membrane: Nafion® 212 Cathode: 0.1 mg 0.2 Membrane: Nation® 212 No activity after 5k 36 mV loss No activity after 5k Ц 0.0 0.0 300 600 900 1500 1800 1200 0.0L 300 600 900 1200 1500 1800 Ό 300 1500 1800 600 900 1200 Current density (mA/cm^2) Current density (mA/cm^2) Current density (mA/cm²) 1.0 1.0 30% Pt/A-CCS 30% Pt/290G 1.0 — Initial 30% commercial Pt/C Initial Initial - - 1000 0.8 0.8 No activity after 5k <u>−</u> – 1000 -20000.8 5,000 cycles 2000 Cell voltage (V) Cell voltage (V) -▲- 5000 Cell voltage (V) 5000 0.6 0.6 0.6 H₂-air H./air stoic: 2/2 H₂-air 170 KPa backpressure H₂-air 0.4 H,/air (2/2 stoic.) 0.4 H./air stoic: 2/2 0.4 80°C, 40% RH 170 KPa backpressure 80 °C, 40% RH, 170 kPaabs back press. Anode: 0.1 mg_/cm² 80°C, 40% RH Cathode: 0.1 mg_/cm² Anode: 0.1 mg_p/cm² 0.2 0.2 Anode: 0.1 mg,/cm² Membrane: Nafion® 212 0.2 Cathode: 0.1 mg,/cm² 60 mV loss Cathode: 0.1 mg/cm² No activity after 5k Membrane: Nafion® 212 0.0∟____0 Membrane: Nafion® 212 0.0 600 900 1200 1500 1800 300 0.0L 300 1800 600 900 1200 1500 0 300 600 1500 1800 900 1200 Current density (mA/cm²) Current density (mA/cm²) Current density (mA/cm²)

HIGHLIGHT:

A-CCS – Low surface area support

- 30% Pt/A-CCS catalyst shows excellent support stability (only 36 mV loss after 5k cycles)
- 30% Pt/290G keeps support stability until 2000 cycles but shows rapid decay between 2k ~ 5k cycles.
- 30% commercial Pt/C shows very poor support stability only after 1000 cycles.

DOE AST Protocol 1.0~ 1.5 V, 500mV/s, 5k cycles, H_2/N_2 , 80°C, 100 % RH, single cell 25cm² **16**

Technical Accomplishments: 30% Pt*/A-CCS Catalyst Development (Support Stability 1.0 to 1.5 V potential cycling)

A-CCS – Low surface area support

HIGHLIGHT:

- XRD: The Pt(111) peak shift is higher for Pt:Co =1:1.
- The catalyst showed initial mass activity of 0.41 A/mg_{PGM} and 0.192 A/mg_{PGM} after 5k cycles (53% loss).
- <u>H₂-air:</u> The initial current density at 0.6 $V_{iR-free}$ is 1.4 A/cm². After 5k cycles, the current density increased to 1.45 A/cm².
- <u>H₂-air:</u> The catalyst showed an increase of ~10 mV (iR-free) and 29 mV (cell voltage) at 1500 mA/cm² after 5k cycles
- ECSA: The ECSA loss is 25% after 5k cycles (decreased from 21 to 16 m²/g_{Pt}).

 $\label{eq:DOE AST Protocol} \begin{array}{l} 1.0 \simeq 1.5 \text{ V}, 500 \text{mV/s}, 5 \text{k cycles}, \\ \text{H}_2/\text{N}_2, 80^{\circ}\text{C}, \ 100 \ \% \ \text{RH}, \text{single} \\ \text{cell } 25 \text{cm}^2 \end{array}$

Pt* = Compressive Pt Lattice Catalyst 17

Technical Accomplishments 30% Pt*/A-CCS Catalyst Development Catalyst Durability (0.6-1.0 V Cycling)

Technical Accomplishments 30% Pt*/A-CCS Catalyst Development Catalyst Durability (0.6-1.0 V Cycling)

Summary

30% Pt*/CCCS Catalyst

- For the first time, at USC, we have achieved <u>initial mass activity of 0.44 A/mg_{PGM}</u> and <u>loss of mass</u> <u>activity of 43% after 30k cycles</u> (0.6-1.0 V) (2017 DOE target is ≥40%).
- ✤ Accomplished potential loss of 40 mV after 30k cycles (0.6-1.0 V) at 0.8 A/cm².
- ✤ Accomplished <u>32% ECSA loss</u> after 30k cycles (0.6-1.0 V).
- ✤ Accomplished (rated) initial power density of 0.23 g_{PGM}/kW.

30% Pt/A-CCS Catalyst

- Accomplished initial mass activity of 0.26 A/mg_{PGM} and loss of mass activity of 50% after 30k cycles (0.6-1.0 V).
- Accomplished potential loss of 72 mV at 0.8 A/cm² after 30k cycles (0.6-1.0 V).
- ✤ Accomplished <u>40% ECSA</u> loss after 30k cycles (0.6-1.0 V).
- For the first time, we have achieved only <u>27 mV (at 0.8 A/cm²) loss after 400 h holding at 1.2 V</u>. At more severe conditions, such as potential cycling between 1.0-1.5 V (5,000 cycles), the Pt/A-CCS catalyst maintained its activity in H₂/air and showed <u>36 mV loss (at 1.5 A/cm²) after 5k cycles (1.0-1.5 V).</u>
- Accomplished <u>41% mass activity loss</u> and <u>45% ECSA loss</u> after 5k cycles (1.0-1.5 V).
- ✤ Accomplished (rated) initial power density of 0.18 g_{PGM}/kW.

30% Pt*/A-CCS Catalyst

- Accomplished initial mass activity of 0.41 A/mg_{PGM} and loss of mass activity of 46% after 30k cycles (0.6-1.0 V).
- Accomplished potential loss of 35 mV (iR-free) and 33 mV (cell voltage) loss at 0.8 A/cm² after 30k cycles (0.6 and 1.0 V).
- Accomplished <u>25% ECSA loss</u> after 30k cycles (0.6 and 1.0 V).
- ✤ The catalyst showed a gain of ~10 mV cell potential at 1500 mA/cm² after 5k cycles (1.0-1.5 V).
- ✤ Accomplished <u>53% mass activity loss</u> and <u>25% ECSA loss</u> after 5k cycles (1.0-1.5 V).
- Accomplished (rated) initial power density of 0.19 g_{PGM}/kW.

Pt* = Compressive Pt Lattice Catalyst 20

Future Work (May-Dec 2015)

- We synthesized Pt*/A-CCS catalysts with optimized Pt-Co structures which showed high initial mass activity (0.41 A/mg_{PGM}), stability of mass activity (46% loss after 30k cycles), high H₂-air performance (1.5 A/cm² at 0.6 V_{iR-free}), and high rated power density (0.19 g_{PGM}/kW).
- Our studies showed formation of ordered tetragonal Pt-Co phase, while the disorder to ordered Pt-Co phase increased with the increase in pyrolysis temperature. The catalyst performance was found to depend on the disordered/ordered Pt-Co structures (Pt*/A-CCS).
 - Detailed studies will be carried out to optimize the performance of Pt*/A-CCS with the structural properties of Co-doped Pt.
 - Structure-property performance will be evaluated for different Pt-Co ratios which result in structures with different degree of formation of compressive Pt-lattice structure.
 - Mathematical model developed at USC and European Commission will be used to optimize the ratio of ordered and disordered Pt-Co phases.
- Further studies will be carried out to increase the H₂-air fuel cell performance of Pt/A-CCS and Pt*/A-CCS catalysts by controlling the hydrophilic/hydrophobic property of A-CCS.
 - The goal is to eliminate the eventual flooding of the support under 1.0-1.5 V cycling.
- Selection of a best performing catalyst to achieve 2017 DOE technical targets for electrocatalyst and catalyst support.

Future Work (May-Dec 2015)

- Reproducibility studies of selected catalyst in 25 and 50 cm² MEAs.
- High-volume production:
 - Optimization of high volume production procedures for A-CCS support and Pt/A-CCS and Pt*/A-CCS catalysts.
- Cost-reduction:
 - Further decrease of PGM loading
 - Cost-effective synthesis procedures by eliminating the chemical leaching process during Pt*/A-CCS synthesis.

Deliverables

Supply of MEAs for independent evaluation at NREL (From May 2015 – Dec 2015).

Summary of Accomplishment of 30% Pt*/CCCS Cathode Catalyst (Phase II)

Metric	Units	Status April 30, 2015	Commercial Pt/C	2017 DOE target		
Initial Mass Activity (Milestone 2)						
Initial Mass activity	A/mg _{PGM} @ 900 mV _{iR-free}	<u>0.44</u>	0.18	≥0.44		
Catalyst Stability (0.6-1.0 V cycling) (Milestone 3)						
Loss in catalyst activity	% loss after 30k cycles	<u>43 %</u> (0.25 A/mg _{PGM})	68%	≤40%		
Loss in ECSA	% loss after 30k cycles	<u>32%</u> (75 → 64 m²/g _{Pt})	80%	≤40%		
Potential loss @ 800 mA/cm ²	mV loss after 30k cycles	40 mV	No Activity	≤30 mV		
PGM Content and PGM Loading (Milestone 4)						
PGM total content (Power Density)	g _{PGM} /kW (rated)	0.23	0.3	≤0.125		
PGM total loading	mg _{PGM} /cm ² _{geo}	0.2	0.2	≤0.125		

Met the 2017 DOE Targets

Pt* = Compressive Pt Lattice Catalyst

Summary of Accomplishment of 30% Pt/A-CCS Cathode Catalyst (Phase II)

Metric	Units	Status April 30, 2015	Commercial Pt/C	2017 DOE target		
Initial Mass Activity (Milestone 2)						
Initial Mass activity	A/mg _{PGM} @ 900 mV _{iR-free}	0.26	0.18	≥0.44		
Catalyst Stability (0.6-1.0 V cycling) (Milestone 3)						
Loss in catalyst activity	% loss after 30k cycles	50% (0.13 А/тд _{РGM})	68%	≤40%		
Loss in ECSA	% loss after 30k cycles	<u>40% (</u> 39 → 23 m²/g _{Pt})	80%	≤40%		
Potential loss @ 800 mA/cm ²	mV loss after 30k cycles	72 mV	No Activity	≤30 mV		
Support Stability (1.2 V holding) (Milestone 3)						
Loss in catalyst activity	% loss after 400 h	<u>32%</u> (0.17 A/mg _{PGM})	72%	≤40%		
Loss in ECSA	% loss after 400 h	<u>6% (</u> 39 → 37 m²/g _{Pt})	71%	≤40%		
Potential loss @ 800 mA/cm ²	mV loss after 400 h	<u>27 mV</u>	No Activity	≤30 mV		
Support Stability (1.0-1.5 V cycling) (New Test Performed)						
Loss in catalyst activity	% loss after 5k cycles	<u>41% (</u> 0.15 А/тд _{РGM})	*	≤40%		
Loss in ECSA	% loss after 5k cycles	<u>45%</u> (39 → 21 m²/g _{Pt})	92%	≤40%		
Potential loss @ 1500 mA/cm ²	mV loss after 5k cycles	<u>36 mV</u>	No Activity	≤30 mV		
PGM Content and PGM Loading (Milestone 4)						
PGM total content (Power Density)	g _{PGM} /kW (rated)	0.18	0.3	≤0.125		
PGM total loading	mg _{PGM} /cm ² _{geo}	0.2	0.2	≤0.125		
*Very low final mass activity – not comparable <u>Met the 2017 DOE Targets</u>						

Summary of Accomplishment of 30% Pt*/A-CCS Cathode Catalyst (Phase II)

Metric	Units	Status April 30, 2015	Commercial Pt/C	2017 DOE target		
Initial Mass Activity (Milestone 2)						
Initial Mass activity	A/mg _{PGM} @ 900 mV _{iR-free}	<u>0.41</u>	0.18	≥0.44		
Catalyst Stability (0.6-1.0 V cycling) (Milestone 3)						
Loss in catalyst activity	% loss after 30k cycles	<u>46% (</u> 0.22 А/тд _{РGM})	68%	≤40%		
Loss in ECSA	% loss after 30k cycles	<u>25% (</u> 24 →18 m²/g _{Pt})	80%	≤40%		
Potential loss @ 800 mA/cm ²	mV loss after 30k cycles	<u>35 mV</u>	No Activity	≤30 mV		
Support Stability (1.0-1.5 V cycling) (New Test Performed)						
Loss in catalyst activity	% loss after 5k cycles	53%* (0.19 А/тд _{РGM})	**	≤40%		
Loss in ECSA	% loss after 5k cycles	<u>25% (</u> 21 →16 m²/g _{Pt})	92%	≤40%		
Potential loss @ 1500 mA/cm ²	mV loss after 5k cycles	<u>No loss (10 mV gain)</u>	No Activity	≤30 mV		
PGM Content and PGM Loading (Milestone 4)						
PGM total content (Power Density)	g _{PGM} /kW (rated)	0.19	0.3	≤0.125		
PGM total loading	mg _{PGM} /cm ² _{geo}	0.2	0.2	≤0.125		

Met the 2017 DOE Targets

* The loss is due to high RH and support oxidation which caused water flooding under H_2/O_2 when subjected to 1.0-1.5 V cycling.

****Very low final mass activity – not comparable**

Collaborations

European Commission (DG Joint Research Centre, Institute for Energy and Transport Cleaner Energy Unit): Mathematical model development for Co-diffusion and compressive Pt-lattice catalyst formation (**Dr. Akos Kriston**).

<u>NREL (Subcontractor</u>): Evaluation of catalyst durability and support stability of USC catalysts according to Fuel Cell Tech Committee Accelerated Stress Test Protocol (<u>May – Dec 2015</u>)

- <u>Rudiger Laufhutte</u> (University of Illinois, Urbana-Champaign): ICP analysis of Pt*/CCCS and Pt*/A-CCS catalysts.
- > <u>Alan Nicholls (</u>University of Illinois, Chicago): HRTEM & XEDS mapping.
- Lax Saraf & Haijun Qian (Clemson University): Transmission Electron Microscopy analysis.
- <u>EM Center</u> (University of South Carolina): HR-TEM analysis
- Scribner Associates: Design and construction of fuel cell test stations according to USC requirements.
- Fuel Cell Technologies: Design and construction of single cells according to USC specifications.

Team Members who contributed to this presentation

University of South Carolina

Branko N. Popov, Tae-keun Kim, Won-suk Jung, Xie Tianyuan, Akos Kriston, and Prabhu Ganesan

Acknowledgement

U.S. Department of Energy

Publications

- 1. Wonsuk Jung, Tianyuan Xie, Taekeun Kim, Prabhu Ganesan, Branko N. Popov, Highly Active and Durable Co-Doped Pt/CCC Cathode Catalyst for Polymer Electrolyte Membrane Fuel Cells, *Electrochim. Acta*, **167** (2015) 1-12.
- 2. T. Kim, T. Xie, W.S. Jung, F. Gadala-Maria, P. Ganesan, B.N. Popov, Development of Catalytically Active and Highly Stable Catalyst Supports for Polymer Electrolyte Membrane Fuel Cells, *J. Power Sources*, **273**, (2015) 761-774.
- 3. T. Xie, W.S. Jung, T. Kim, P. Ganesan, B.N. Popov, Development of Highly Active and Durable Hybrid Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells, *J. Electrochem. Soc.*, **161** (2014) F1489-F1501.
- 4. Ákos Kriston, Tianyuan Xie and Branko N. Popov, Impact of Ultra-low Platinum loading on Mass Activity and Mass Transport in H₂-Oxygen and H₂-Air PEM Fuel Cells, *Electrochim. Acta*, **121** (2014) 116-127.
- 5. Akos Kriston, Tianyuan Xie, Prabhu Ganesan, Branko N. Popov, "Effect of Pt Loading on Mass and Specific Activity in PEM Fuel Cells" J. Electrochem. Soc., **160** (2013) F406-F412.
- 6. Ákos Kriston, Tianyuan Xie, David Gamliel, Prabhu Ganesan, Branko N. Popov,, "Effect of Ultra-Low Pt Loading on Mass Activity of PEM Fuel Cells" *J. Power Sources*, **243** (2013) 958-963.
- 7. Branko N. Popov, Tianyuan Xie, Taekeun Kim, Won Suk Jung, and Prabhu Ganesan, "Development of Ultra-Low Loading Pt Alloy Cathode Catalyst for PEM Fuel Cells," *ECS Transactions*, 58 (2013) 761-778.
- 8. Akos Kriston, Tianyuan Xie, Taekeun Kim, Won Suk Jung, David Gamliel, Brian Murphy Prabhu Ganesan, Branko N. Popov, Analyzing the effect of Ultra-Low Pt Loading on Mass and Specific Activity of PEM Fuel Cells, *ECS Transactions*, **50**, (2013) 1427-1438.
- 9. Tianyuan Xie, Taekeun Kim, Won Suk Jung, Kriston Akos Prabhu Ganesan and Branko N. Popov, "Development of Highly Active Pt₂Ni/C Catalyst for PEM Fuel Cell", *ECS Transactions*, **50** (2) (2013) 1615-1626.
- 10. Taekeun Kim, Won Suk Jung, Tianyuan Xie, Akos Kriston, Prabhu Ganesan, David Gamliel, Brian Murphy and Branko N. Popov, "Development of Hybrid Cathode Catalyst for PEM Fuel Cells", *ECS Transactions*, **50** (2) (2013) 1875-1885.
- 11. Branko N. Popov, Tianyuan Xie, Taekeun Kim, Won-suk Jung, Akos Kriston Brian Murphy and Prabhu Ganesan, "Development of Ultra-Low Pt Alloy Cathode Catalyst for PEM Fuel Cells", ECS Transactions, 50 (2) (2013) 773-785.
- 12. Xuguang Li and Branko N. Popov, Development of Non-Precious Metal Catalysts for Oxygen Reduction Reaction in Fuel Cells with High Activity and Stability, *ECS Trans.* 2010, *33*, 2333-2339.
- 13. Xuguang Li, Gang Liu, Prabhu Ganesan, Hansung Kim, Bumwook Roh, and Inchul Hwang, Development of Ultra-Low Pt Alloy Cathode Catalyst for PEM Fuel Cells, Branko N. Popov, *ECS Transactions*, 2011, 41 (1), 955-969.
- 14. Xuguang Li, Sheng-Yang Huang, Branko Popov, "Development of Low Pt Loading Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells", *ECS Trans.* 2010, *33*, 239-246.

Presentations

- 1. Development of Ultra-Low Loading Pt Hybrid Catalyst for PEM Fuel Cells, Tianyuan Xie, Taekeun Kim, Won Suk Jung, Prabhu Ganesan, and Branko N. Popov, *224th ECS Meeting*, San Francisco, CA, October 27-November 01, 2013.
- Development of Ultra-Low Loading Pt Alloy Cathode Catalyst for PEM Fuel Cells, Branko N. Popov, Tianyuan Xie, Taekeun Kim, Won Suk Jung, and Prabhu Ganesan, 224th ECS Meeting, San Francisco, CA, October 27-November 01, 2013.
- 3. Development of Ultra-Low Loading Pt/AGC Catalyst for PEM Fuel Cells, Taekeun Kim, Won Suk Jung, and Prabhu Ganesan, Tianyuan Xie, and Branko N. Popov, 224th ECS Meeting, San Francisco, CA, October 27-November 01, 2013.
- 4. Analyzing the effect of Ultra-Low Pt Loading on Mass and Specific Activity of PEM Fuel Cells, Akos Kriston, Tianyuan Xie, Taekeun Kim, Won Suk Jung, David Gamliel, Brian Murphy Prabhu Ganesan, Branko N. Popov, *222nd ECS Meeting*, Honolulu, HI, October 7-12, 2012.
- Development of Ultra-Low Pt Alloy Cathode Catalyst for PEM Fuel Cells, Branko N. Popov, Tianyuan Xie, Taekeun Kim, Won-suk Jung, Akos Kriston Brian Murphy, David Gamliel and Prabhu Ganesan, 222nd ECS Meeting, Honolulu, HI, October 7-12, 2012.
- Development of Highly Active Pt₂Ni/CCC Catalyst for PEM Fuel Cell, Tianyuan Xie, Won Suk Jung, Taekeun Kim, Kriston Akos Prabhu Ganesan and Branko N. Popov, 222nd ECS Meeting, Honolulu, HI, October 7-12, 2012.
- Development of Hybrid Cathode Catalyst for PEM Fuel Cells, Taekeun Kim, Won Suk Jung, Tianyuan Xie, Akos Kriston, Prabhu Ganesan, David Gamliel, Brian Murphy and Branko N. Popov, 222nd ECS Meeting, Honolulu, HI, October 7-12, 2012.
- 8. Development of ultra-low platinum alloy cathode catalyst for PEM fuel cells, Branko N. Popov, Tae-keun Kim, Xie Tianyuan, Prabhu Ganesan, and Hansung Kim, 220th ECS Meeting, Boston, MA, October 9-14, 2011.
- 9. Titanium Dioxide-Supported Platinum Catalysts, S. Huang, P. Ganesan, and B. N. Popov, 220th ECS Meeting, Boston, MA, October 9-14, 2011.
- Development of Non-Precious Metal Catalysts for Oxygen Reduction Reaction in Fuel Cells with High Activity and Stability, X. Li, G. Liu, T. Kim, S. Ganesan, P. Ganesan, and B. N. Popov, 220th ECS Meeting, Boston, MA, October 9-14, 2011.
- 11. Development of Low Platinum Loading Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells, X. Li, S. Huang, B.N. Popov, *218th Meeting of the Electrochem. Soc.*, Las Vegas, Nevada, October 13, 2010.
- 12. Recent Advances in Non-Precious Metal Catalyst for Oxygen Reduction Reaction in Fuel Cells," X. Li, B.N. Popov, T. Kawahara, H. Yanagi, 218th Meeting of the Electrochem. Soc., Nevada, October 13, 2010.

Response to Reviewers' Comments

The accomplishments of this project are generally considered good, based on the performance data provided. The PI should address the following questions regarding the achievements:

<u>**Comment 1**</u>: Catalytic activity of the "support" measured by RDE was reported. The PI should have also included the "support" activity study measured in MEA at the single-cell level. Response: The results of H_2 - O_2 fuel cell performance of various CCCS are presented in Fig. 1

Fig. 1. H_2 - O_2 polarization curves of various CCCS synthesized at USC.

Response to Reviewers' Comments

<u>Comment 2</u>: The PI demonstrated an excellent improvement in stability against commercial Pt/C material. Representative data of the commercial Pt/C catalyst/MEA should also be included in the presentation for comparison.

<u>Response</u>: As suggested by the reviewer, the H_2 -air and H_2 - O_2 polarization curves of commercial Pt/C and commercial Pt₃Co/graphitic carbon are included in this presentation. Please refer <u>slide number 11</u>.

<u>Comment 3</u>: The catalyst demonstrated good stability under a relatively mild cycling condition (0.6–1 V). For the Pt-based catalyst, a more severe aging condition should have been used.

<u>Response</u>: A more severe aging conditions such as potential cycling between 1.0 and 1.5 V (5,000 cycles) and potential holding at 1.2 V (400 h) have been applied to the Pt/A-CCS and Pt*/A-CCS catalysts. Please refer **<u>slide numbers 15-17</u>**.