Battelle Vince Contini Fritz Eubanks Mike Jansen Paul George Mahan Mansouri

Stationary and Emerging Market Fuel Cell System Cost Analysis – Primary Power and Combined Heat and Power Applications FC097 06/11/2015 Washington D.C.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview – Program Details

	Timeline		Budget	(DOE Project F	unding)
Start	\bigcirc	End	\bigcirc		Total
Oct 2011	FY14 (BP3)	S ep 2016		\$486K FY14 Fundi	\$2 M ng
Total Fund	ing Spent \$1,27	7K as of 3/31/15	F	Y15 Funding \$343	K
Collaborato have provid Hydrogenics NexTech Ballard	ors led design inpu • Innovatek • Panasonic • US Hybrid	ts, cost inputs, des Johnson Matthe Advanced Powe Zahn Electronics	sign review, a y/Catacel • r Associates • s •	nd manufacturing Watt Fuel Cell • Vicor Power SMA-America	g cost review Outback Powe Technologies
		Barriers Ad	Idressed		
Cost reduction components a	on of fuel cell and materials	Manufacturing	capability	Customer ac	ceptance

Relevance – Program Objective

5-year program to assist DOE in developing fuel cell systems for stationary and emerging markets by developing independent models and cost estimates

- Applications Primary (including CHP) power, backup power, APU, and material handling equipment
- Fuel Cell Types 80°C PEM, 180°C PEM, SOFC technologies
- Annual Production Volumes 100, 1K, 10K and 50K (only for primary production systems)
- Size 1, 5, 10, 25, 100, 250 kW

In Budget Period 3 (BP3)

 1, 5, 10 and 25 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications

Relevance – Technical Barriers Addressed

Technical Barriers	Project Goals			
Cost reduction of fuel cell components and materials	1. Identify major contributors to fuel cell system cost			
	. Quantify potential cost reduction based upon technological improvements			
	3. Identify major contributors to fuel cell system manufacturing cost			
Manufacturing capability	 Identify areas for manufacturing R&D to improve quality and/or throughput 			
	5. Provide basis for consideration of transition from other industries			
Customer acceptance	6. Develop accurate cost projections that can be used to evaluate total cost of ownership and facilitate early market adoption			

Approach – Manufacturing Cost Analysis Methodology

Market Assessment	System Design	Cost Modeling	Sensitivity & Life Cycle Cost Analysis
 Characterization of potential markets Identification of operational and performance requirements Evaluation of fuel cell technologies relative to requirements Selection of specific systems for cost modeling 	 Conduct literature search Develop system design Gather industry input Size components Gather stakeholder input Refine design Develop bill of materials (BOM) Define manufacturing processes Estimate equipment requirements 	 Gather vendor quotes Define material costs Estimate capital expenditures Determine outsourced component costs Estimate system assembly Develop preliminary costs Gather stakeholder input Refine models and update costs 	 Sensitivity analysis of individual cost contributors Life cycle cost analysis to estimate total cost of ownership

Progress & Accomplishments – Representative LTPEM CHP system

Progress & Accomplishments – Representative SOFC CHP system

Progress & Accomplishments – Electrical System Schematic

Progress & Accomplishments – Nominal Design Basis

Metric/Feature	Objective
Input, Fuel	Utility Natural Gas or Propane
	(>30 psig preferred)
Input, Air	Ambient air (-20° to 50°C)
Input, Other	N/A
Output	120/240 VAC
	480 VAC 3-phase optional
Net Power Output	1, 5, 10, 25 kW
System Efficiency (electrical)	
LTPEM	30%
SOFC	40%
System Efficiency Overall	
LTPEM	80%
SOFC	90%
System Life	50,000 hours
System Maintenance Interval	1
(filter change: sulfur trap, air filter, fuel filter)	i year
Grid Connection	Yes, local and/or utility
Operate off-grid	Yes, critical load back-up
Start off-grid	No

Progress & Accomplishments –PEM Fuel Cell Design Parameters

Parameter	1 kW	5 kW	10 kW	25 kW		
Power Density (W/cm²)		C).27			
Current Density (A/cm ²)			0.4			
Cell Voltage (VDC)		C).68			
Active Area Per Cell (cm ²)	2	200	4(00		
Net Power (kW)	1	5	10	25		
Gross Power (kW)	1.2	6	12	30		
Number of Cells (#)	22	110	110	276		
Full Load Stack Voltage (VDC)	15	75	75	188		
Membrane Base Material	PFSA, 0.2m	m thick, PTFE re	einforced			
Catalyst Loading	0.4 mg Pt/cm2 (total)					
oatalyst Loading	Cathode is 2:1 relative to Anode					
Catalyst Application	Catalyst ink prepared, slot die coating deposition, heat					
Gas diffusion lavor (CDL) Raso Matorial	Carbon paper 0.2 mm thick					
GDL Construction	Carbon pape	ar dip_coated wit	h DTEE for wate	r management		
Membrane electrode assembly (MEA)	Carbon pape	a up-coaled wit		er management		
Construction	Hot press and die cut					
Seals	1 mm silicone, infection molded					
Stack Assembly	Hand assem	bled, tie rods				
Bipolar Plates	Graphite con	nposite, compre	ssion molded			
End Plates	Die cast and	machined A356	aluminum			

Progress & Accomplishments –SOFC Fuel Cell Design Parameters

Parameter	1 kW	5 kW	10 kW	25kW	
Cell Power Density (W/cm ²)	0.32				
Cell Current Density (A/cm ²)			0.4		
Cell Voltage (VDC)			0.7		
Active Area Per Cell (cm ²)	200	200	400	400	
Rated Net Power (kW, continuous)	1	5	10	25	
Rated Gross Power (kW, continuous)	1.2	6	12	30	
Number of Cells (#)	21	107	107	268	
Open Circuit Voltage (VDC)	24	118	118	295	
Full Load Stack Voltage (VDC)	15	75	75	188	
Cell Design	Planar, An	ode supported			
Anode Material	Ni-8YSZ, 2	250 µm thick			
Anode Application	Tape cast,	kiln fire			
Anode Active Layer Material	NI-YSZ, 1	5 µm thick			
Anode Active Layer Application	Screen Print, kiln fire				
Anode Contact Layer Material	NI-YSZ, 10 µm thick				
Anode Contact Layer Application	Screen Print, kiln fire				
Electrolyte Material	8YSZ, 8 µm thick				
Electrolyte Application	Screen pri	nt, kiln fire			

Progress & Accomplishments –SOFC Fuel Cell Design Parameters

Parameter	
Cathode Active Layer Material	YSZ/LSM, 5µm thick
Cathode Active Layer Application	Screen Print, kiln fire
Cathode Material	LSCF, 30 µm thick
Cathode Application	Screen Print, kiln fire
Cathode Contact Layer Material	LSM/YSZ, 10 µm thick
Cathode Contact Layer Application	Screen Print, kiln fire
Seals	Wet application bonded glass/ceramic
Stack Assembly	Hand Assembled, tie rods, furnace brazed
	Ferritic Stainless Steel (SS-441) with
Interconnects	Perovskite coating, 2-3 µm thick
End Plates	Die Cast and Machined A560 Steel

Progress & Accomplishments – Methodology for Calculating Manufacturing Costs

- Use the Boothroyd-Dewhurst DFMA[®] estimating software for standard process models whenever they exist
- Developed custom models as needed

- Custom Model Development Process
 - Develop model approach and process flow
 - Perform preliminary model analysis
 - Inputs and calculations required to produce cost outputs
 - Independent verification of viability and accuracy
 - Implement model in Excel
 - Develop model using DFMA[®] principles and methods
 - Validate model results against preliminary cost analysis results

Progress & Accomplishments – Manufacturing Processes Evaluated

Process	Method Evaluated	Alternatives not Evaluated
Catalyst deposition	Slot die coating	Tape casting
		Nanostructure Thin Film
		Screen printing
		Spray coating
	Single head slot die with	Dual head slot die
	decal transfer	Multi-pass slot die
Bipolar plate	Compression molding	Die stamping and coating (metal plates)
MEA forming	Ruler blade die cutting	Laser cutting
Gasket/seal forming	Injection molding	Laser cutting
		Die cutting

PEM

SOFC

Process	Method Evaluated	Alternatives not Evaluated	
Coromic donocition	Screen printing	Plasma spray coating	
Ceramic deposition	Tape casting		
	Sheet metal stamping, laser	Laser cutting, water jet cutting,	
Interconnect	etching	chemical etching	
	Spray deposition coating	CVD/PVD	
Sealing	Bead deposition	Screen printing, tape casting	
Picture frame	Sheet metal stamping	Laser cutting, water jet cutting.	
	Die casting + final machining	Stamping, welding	
End plate	Machine from block (not		
	chosen)		

Progress & Accomplishments – PEM Stack Manufacturing Cost (5&25kW)

Stack .		5 kW				25 kW			
Components	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	
MEA	\$12,756	\$4,518	\$1,877	\$1,147	\$26,050	\$10,404	\$5,163	\$3,705	
Bipolar plates	\$821	\$587	\$438	\$419	\$2,280	\$1,414	\$1,261	\$1,214	
Seals	\$175	\$170	\$165	\$158	\$431	\$419	\$407	\$393	
End plates	\$57	\$43	\$41	\$20	\$65	\$50	\$47	\$42	
Assembly hardware	\$74	\$74	\$74	\$74	\$74	\$74	\$74	\$74	
Assembly labor	\$80	\$64	\$63	\$63	\$194	\$155	\$151	\$151	
Test and conditioning	\$3,013	\$390	\$177	\$156	\$3,107	\$452	\$226	\$200	
Total Cost	\$16,978	\$5,846	\$2,835	\$2,038	\$32,200	\$12,967	\$7,329	\$5,779	
Cost per kW _{net}	\$3,396	\$1,169	\$567	\$408	\$1,288	\$519	\$293	\$231	

All costs include manufacturing scrap

PEM Fuel Cell Stack Volume Trends

Progress & Accomplishments – CHP PEM BoP Manufacturing Cost

		5	W		25 kW			
BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Fuel Supply	\$1,620	\$766	\$687	\$658	\$1,782	\$646	\$553	\$508
Water Supply	\$1,226	\$1,050	\$784	\$604	\$2,267	\$2,083	\$1,495	\$1,164
Fuel Processing	\$3,975	\$2,962	\$2,432	\$2,262	\$8,713	\$6,386	\$5,399	\$4,989
Air Supply (Combustion)	\$893	\$824	\$762	\$733	\$1,311	\$1,198	\$1,106	\$1,069
Air Supply (Cathode)	\$1,234	\$972	\$640	\$539	\$1,749	\$1,384	\$921	\$781
Heat Recovery	\$1,592	\$1,276	\$1,153	\$1,103	\$3,706	\$2,924	\$2,637	\$2,515
AC Power	\$2,438	\$2,253	\$2,083	\$1,935	\$11,150	\$10,321	\$9,555	\$8,899
DC Power	\$2,123	\$1,721	\$1,560	\$1,500	\$10,638	\$7,900	\$7,283	\$6,970
Instrumentation and Control	\$1,700	\$1,531	\$1,390	\$1,335	\$3,012	\$2,719	\$2,459	\$2,330
Assembly Components	\$746	\$678	\$610	\$548	\$1,455	\$1,323	\$1,190	\$1,072
Additional Work Estimate	\$1,600	\$1,300	\$1,100	\$1,000	\$3,200	\$2,600	\$2,200	\$2,100
BOP Total	\$19,146	\$15,335	\$13,202	\$12,216	\$48,983	\$39,485	\$34,799	\$32,396

Progress & Accomplishments – CHP PEM BoP Manufacturing Cost

- Fuel Supply
- Water Supply
- Fuel Processing
- Air Supply (combustion)
- Air Supply (cathode)
- Heat Recovery
- AC Power
- DC Power
- Instrumentation and Control
- Assembly Components
- Additional Work Estimate
- Fuel Supply
- Water Supply
- Fuel Processing
- Air Supply (combustion)
- Air Supply (cathode)
- Heat Recovery
- AC Power
- DC Power
- Instrumentation and Control
- Assembly Components
- Additional Work Estimate

25kW Systems 1000 units/year

5kW Systems 50,000 units/year

25kW Systems 50,000 units/year

Progress & Accomplishments – 5 kW CHP PEM Fuel Cell System Cost Summary

BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Total stack manufacturing cost, with scrap	\$16,978	\$5,847	\$2,835	\$2,039
Stack manufacturing capital cost	\$481	\$62	\$24	\$24
CHP Hardware	\$4,915	\$4,293	\$3,934	\$3,719
FC BOP Hardware	\$14,231	\$11,042	\$9,268	\$8,497
System assembly, test, and conditioning	\$2,737	\$433	\$274	\$252
Total system cost, pre-markup	\$39,343	\$21,677	\$16,335	\$14,531
System cost per KW _{net} , pre- markup	\$7,869	\$4,335	\$3,267	\$2,906
Sales Markup	50.00%	50.00%	50.00%	50.00%
Total system cost, with markup	\$59,014	\$32,515	\$24,503	\$21,796
System cost per KW _{net} , with markup	\$11,803	\$6,503	\$4,901	\$4,359

Progress & Accomplishments – 25 kW CHP PEM Fuel Cell System Cost Summary

BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Total stack manufacturing cost, with scrap	\$32,200	\$12,967	\$7,329	\$5,779
Stack manufacturing capital cost	\$481	\$76	\$54	\$48
CHP Hardware	\$22,325	\$18,705	\$17,279	\$16,298
FC BOP Hardware	\$26,658	\$20,780	\$17,520	\$16,097
System assembly, test, and conditioning	\$2,777	\$452	\$283	\$257
Total system cost, pre-markup	\$84,442	\$52,980	\$42,465	\$38,480
System cost per KW _{net} , pre- markup	\$3,378	\$2,119	\$1,699	\$1,539
Sales Markup	50.00%	50.00%	50.00%	50.00%
Total system cost, with markup	\$126,663	\$79,471	\$63,697	\$57,721
System cost per KW _{net} , with markup	\$5,067	\$3,179	\$2,548	\$2,309

Progress & Accomplishments – CHP PEM Fuel Cell System Cost Comparison

Progress & Accomplishments – CHP PEM Fuel Cell System Cost Comparison

Progress & Accomplishments – SOFC Stack Manufacturing Cost (5&25kW)

5 kW					25 kW				
Components	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	
Ceramic Cells	\$1,728	\$1,555	\$923	\$788	\$5,825	\$4,359	\$2,913	\$2,648	
Interconnects	\$1,348	\$905	\$428	\$347	\$5,150	\$2,362	\$1,566	\$1,294	
Picture Frames	\$27	\$17	\$14	\$12	\$63	\$44	\$35	\$29	
Glass Ceramic Sealing	\$200	\$196	\$162	\$141	\$623	\$617	\$466	\$444	
End plates	\$537	\$496	\$380	\$348	\$1,026	\$939	\$771	\$718	
Assembly hardware	\$222	\$222	\$222	\$222	\$222	\$222	\$222	\$222	
Assembly labor	\$43	\$35	\$34	\$34	\$106	\$85	\$82	\$82	
Stack Brazing	\$38	\$30	\$26	\$20	\$121	\$96	\$55	\$42	
Test and conditioning	\$2,190	\$466	\$257	\$226	\$2,940	\$876	\$527	\$452	
Total Cost	\$6,333	\$3,923	\$2,446	\$2,137	\$16,075	\$9,600	\$6,637	\$5,930	
Cost per kW _{net}	\$1,267	\$785	\$489	\$427	\$643	\$384	\$265	\$237	

All costs include manufacturing scrap

SOFC Fuel Cell Stack Volume Trends

Progress & Accomplishments – CHP SOFC BoP Manufacturing Cost

		5 kW			25 kW			
BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Fuel Supply	\$1,795	\$930	\$822	\$778	\$1,782	\$646	\$553	\$508
Fuel Processing	\$2,162	\$1,680	\$1,283	\$1,216	\$3,904	\$2,830	\$2,224	\$2,123
Start-up Air Supply (CPOX)	\$791	\$732	\$679	\$655	\$1,094	\$1,004	\$931	\$899
Cathode Air	\$562	\$506	\$455	\$442	\$816	\$735	\$661	\$641
Heat Recovery	\$956	\$677	\$605	\$557	\$2,047	\$1,517	\$1,357	\$1,276
AC Power	\$2,438	\$2,238	\$2,043	\$1,899	\$11,150	\$10,321	\$9,555	\$8,898
DC Power	\$2,123	\$1,721	\$1,560	\$1,500	\$10,638	\$7,900	\$7,283	\$6,970
Instrumentation and Control	\$1,700	\$1,530	\$1,389	\$1,335	\$2,993	\$2,346	\$2,123	\$2,006
Assembly Components	\$697	\$634	\$568	\$512	\$1,037	\$942	\$848	\$764
Additional Work Estimate	\$1,200	\$900	\$800	\$800	\$2,100	\$1,700	\$1,500	\$1,400
BOP Total	\$14,424	\$11,548	\$10,204	\$9,694	\$37,560	\$29,941	\$27,036	\$25,485

Progress & Accomplishments – CHP SOFC BoP Manufacturing Cost

Progress & Accomplishments – 5 kW CHP SOFC Fuel Cell System Cost Summary

BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Total stack manufacturing cost, with scrap	\$6,333	\$3,923	\$2,446	\$2,137
Stack manufacturing capital cost	\$295	\$47	\$65	\$56
CHP Hardware	\$5,112	\$4,456 \$4,054		\$3,838
FC BOP Hardware	\$9,311	\$7,093	\$6,150	\$5,856
System assembly, test, and conditioning	\$1,946	\$316	\$178	\$162
Total system cost, pre-markup	\$22,998	\$15,834	\$12,893	\$12,050
System cost per KW _{net} , pre-markup	\$4,600	\$3,167	\$2,579	\$2,410
Sales Markup	50.00%	50.00%	50.00%	50.00%
Total system cost, with markup	\$34,497	\$23,751	\$19,339	\$18,075
System cost per KW _{net} , with markup	\$6,899	\$4,750	\$3,868	\$3,615

Progress & Accomplishments – 25 kW CHP SOFC Fuel Cell System Cost Summary

BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Total stack manufacturing cost, with scrap	\$16,075	\$9,600	\$6,637	\$5,930
Stack manufacturing capital cost	\$295	\$245	\$245 \$177	
CHP Hardware	\$23,134	\$19,433	\$19,433 \$17,939	
FC BOP Hardware	\$14,426	\$10,508	\$9,097	\$8,546
System assembly, test, and conditioning	\$2,211	\$442	\$238	\$198
Total system cost, pre-markup	\$56,142	\$40,228	\$34,087	\$31,778
System cost per KW _{net} , pre-markup	\$2,246	\$1,609	\$1,363	\$1,271
Sales Markup	50.00%	50.00%	50.00%	50.00%
Total system cost, with markup	\$84,214	\$60,342	\$51,131	\$47,666
System cost per KW _{net} , with markup	\$3,369	\$2,414	\$2,045	\$1,907

Progress & Accomplishments – CHP SOFC Fuel Cell System Cost Comparison

Progress & Accomplishments – CHP SOFC Fuel Cell System Cost Comparison

PEM – 1,000 units/year	Fuel Cell	Utilities Only SOFC – 1,000 units/year		Fuel Cell	Utilities Only
Cost of System	\$79,471	N/A	Cost of System	\$60,342	N/A
Installation Cost	\$10,000	N/A	Installation Cost	\$10,000	N/A
Annual Cost of Capital (10%)	\$22,812	N/A	Annual Cost of Capital (10%)	\$17,935	N/A
Annual Consumables	\$1,252	N/A	Annual Consumables	\$521	N/A
Annual O & M Costs	\$750	N/A	Annual O & M Costs	\$750	N/A
Annual Electricity Utility Cost	\$91,185	\$135,427	Annual Electricity Utility Cost	\$91,185	\$135,427
Annual Gas Utility Cost	\$37,958	\$26,290	Annual Gas Utility Cost	\$36,763	\$26,290
Annual Total	\$153,957	\$161,717	Annual Total	\$147,154	\$161,717
Annual Savings	\$7,760		Annual Savings	\$14,563	

PEM – 10,000 units/year	Fuel Cell	Utilities Only	SOFC – 10,000 units/year	Fuel Cell	Utilities Only
Cost of System	\$63,697	N/A	Cost of System	\$51,131	N/A
Installation Cost	\$10,000	N/A	Installation Cost	\$10,000	N/A
Annual Cost of Capital (10%)	\$18,790	N/A	Annual Cost of Capital (10%)	\$15,586	N/A
Annual Consumables	\$791	N/A	Annual Consumables	\$460	N/A
Annual O & M Costs	\$750	N/A	Annual O & M Costs	\$750	N/A
Annual Electricity Utility Cost	\$91,185	\$135,427	Annual Electricity Utility Cost	\$91,185	\$135,427
Annual Gas Utility Cost	\$37,958	\$26,290	Annual Gas Utility Cost	\$36,763	\$26,290
Annual Total	\$149,474	\$161,717	Annual Total	\$144,744	\$161,717
Annual Savings	\$12,243		Annual Savings	\$16,973	

*Annual cost comparison when using CHP system in San Diego Restaurant with a Production Volume of 1,000 or 10,000 Units per Year

*Cumulative cash flows for PEM and SOFC systems with production volumes of 1,000 and 10,000 units/year in the San Diego store

Progress & Accomplishments – Results Summary

- Electronics and power conversion dominate system cost, particularly as you increase in system size
- An attractive value proposition exists under specific utility rate conditions
- Manufacturing Readiness Level (MRL) for many BOP components not ready for mass production – significant cost driver
 - DFMA[®] performed on specific components (Fuel Processing, Stack) assumes technology > MRL 9

Progress & Accomplishments – Response to Previous Year Reviewers' Comments

- FY14 Reviewer comment: "Battelle should expand cooperation to include InnovaTek. DOE should facilitate the collaboration."
 - Innovatek did collaborate this year and provided system design review and feedback.
- FY14 Reviewer comment: "The team should delete HT PEM and add collaboration with InnovaTek for 5 kW SOFC cost analysis."
 - We agree that the applicability of HTPEM is in question and it did not make the cut for this year's CHP and Primary Power analysis.
- FY14 Reviewer comment: "The team should make sure end users are involved."
 - For this year's life cycle cost analysis a potential end user was utilized and actual utilities data was used for the analysis.

Collaborations

The following companies provided support for the CHP and Primary Power effort

- Johnson Matthey/Catacel
 - System Design Review/Feedback
 - Fuel Processing technology review/feedback
- NexTech Materials
 - System Design Review/Feedback
 - SOFC technology assessment
- Innovatek
 - System Design Review/Feedback
- Ballard
 - System Design Review/Feedback
- Panasonic
 - System Design Review/feedback
 - BOP design comments

Proposed Future Work

Budget Period 4	Budget Period 5
 Large Scale Primary Power and CHP Applications (PEMFC, High Temp PEMFC, SOFC) 100 kW, 250 kW Backup Power (PEMFC) 	 Revisit all applications in previous 4 budget periods

Summary

- **Relevance:** Help answer questions on opportunities for cost reduction to penetrate non-automotive applications
- **Approach:** Perform cost modeling including DFMA[®] analysis of a generic fuel cell system design developed for the application
- Technical Accomplishments and Progress: Completed cost analysis of 1, 5, 10 and 25 kW fuel cell systems for primary power and combined heat and power applications
- Technology Transfer/Collaborations: Working with a number of industry collaborators (e.g., Johnson Matthey/Catacel, NexTech Materials, Ballard) for design inputs, cost inputs, design review and results review
- Proposed Future Research: 100 and 250 kW Primary Power and CHP Applications (PEMFC, High Temp PEMFC, SOFC) and Backup Power Applications (PEMFC)

Technical Backup Slides

System Sizing – Notional Curve

Time

Progress & Accomplishments – SOFC Fuel Cell Stack Manufacturing Process Overview

The Business of Innovation

Progress & Accomplishments – Capital Cost Assumptions

Capital Cost	Unit Cost (2014\$)	Units	Total Cost (2014\$)	Assumption/Reference
Factory Total Construction Cost	250	\$/sq ft	751,723 to 1,348,055	 Includes Electrical Costs (\$50/sq ft) Total plant area based on line footprint plus 1.5x line space for working space, offices, shipping, etc. Varies with anticipated annual production volumes of both 1 kW and 5 kW stacks
Production Line Equipment Cost	Varies by component		1,537,495 to 2,890,680	 Varies with anticipated annual production volumes of both 1 kW and 5 kW stacks
Forklifts	25,000	\$/lift	50,000	 Assumes 2 forklifts with extra battery and charger
Cranes	66,000	\$/crane	198,000	 Assumes 3 cranes, 5 ton capacity, 20' wide per line
Real Estate	125,000	\$/acre	125,000	 Assumes 1 acre of vacant land, zoned industrial Columbus, OH
Contingency	10% Capital Cost		266,222 to 461,174	Construction estimation assumption
Total			2,928,440 to 5,072,909	 Varies with anticipated annual production volumes of both 1 kW and 5 kW stacks