

Smart Matrix Development for Direct Carbonate Fuel Cell

PI: C. Yuh Co-PI: A. Hilmi June 11, 2015

Project ID FC116

Ultra-Clean | Efficient | Reliable Power

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Barriers

Timeline

Project Start Date: 09/22/2014Project End Date: 10/31/2017

Budget

- •Total Project Budget: \$4,519K
 - Total Recipient Share: \$1,356K
 - Total Federal Share: \$3,163K
 - Total DOE Funds Spent*: ~\$430K

* As of 3/31/15

Barrier	Target
A (durability): Incomplete understanding of degradation mechanism	80,000h operating
A (durability) & B (cost): Develop cost-effective matrix degradation- mitigation schemes	lifetime (2020)

Partners

- FuelCell Energy, Inc. (project lead)
- University of Connecticut Center for Clean Energy Engineering (C2E2)
 - Degradation mechanistic understanding
- Illinois Institute of technology (IIT)
 - Matrix electrolyte wettability investigation

Relevance

Overall Objectives: Develop an innovative durable DFC (Direct Fuel Cell) electrolyte matrix ('Smart' Matrix) to enable <u>>420kW rated stack power and</u> <u>10-year (80,000h) stack service life</u>*

- Increase market penetration for stationary fuel cells
- Enable technology for hydrogen infrastructure & CO₂ capture
- Enable domestic clean-energy job growth
- **Objectives for Current Project Year (October 2014 April 2015)**:
- Develop plans to achieve 'Smart' Matrix technical goals
- Develop plans to enhance degradation mechanistic understanding
- Initiate cell testing of 'Smart' Matrix

Impact since 2014 AMR

- Identified environmental factors impacting degradation (Barrier A)
- Fabricated 'Smart' Matrix meeting beginning-of-life porosity and porestructure targets (Barriers A and B)

*current-generation: 350kW rated stack power and 5-year stack service life

'Smart' Matrix aims to enable 80,000h DFC stack life by 2020

RD&D Technical Targets: 100 kW–3 MW Combined Heat and Power and			
Distributed Generation Fuel Cell Systems Operating on Natural Gas			
Characteristic DFC Baseline 2020 Targets			
Electrical efficiency at rated power	47%	>50%	
CHP energy efficiency	90%	90%	
Operating lifetime	>43,000h	80,000h	

What is DFC?

DFC Active Cell Components

Matrix Requirements

- Stable fine-pore structure for capillary electrolyte retention
- High porosity for low ionic resistance
- High strength and toughness to withstand thermo-mechanical stress

> Coarsening of α -LiAlO₂ support material leading to pore growth

- Reduced electrolyte retention capability
- Increased cross-leakage
- Increased ohmic resistance
- Electrolyte mal-distribution and cell performance impact

Goals	Approaches	Desired Characteristics
BOL* >20% porosity increase and improved fine-pore	Pore former	 Chemical compatibility Free of contaminant No undesirable residue
structure (>30% reduction on pores larger than 0.2μm)	Optimize slurry formulation and processing	 Improved slurry rheology & manufacture yield
EOL* Stable fine pores for enhanced electrolyte retention (<50% pores larger than 0.2µm)	Stabilized LiAIO ₂	 Stable phase Low solubility Slow coarsening

*BOL: beginning-of-life, EOL: end-of-life

Goals	Tests/Experiments	Characterization Methods
Matrix microstructure change	Effect of temperature, gas composition & cell location on coarsening rate	FCE/UConn HRSEM, XRD, BET, porosimetry, electrolyte fill level
LiAIO ₂ solubility & phase stability	Solubility, coarsening and defect chemistry (550-800°C, reducing/oxidizing atmosphere)	FCE/UConn HRSEM, ICP, XRD, BET, Density, FTIR, XPS
Matrix wettability	Effect of time, temperature and gas composition	FCE/IIT Optical Sessile drop

Approach: Near-term Milestones & Go/No-Go Decisions

Program on track

Milestone	Description	
Through 3/31/2015	 Deliver technical plans Achieve high-porosity stable fine-pore structure Enhance degradation mechanistic understanding Initiate "Smart' Matrix cell testing 	100%
Remaining	Achieve BOL mechanical strength (>30% increase) and improved fine- pore structure	75%
FY2015	Verify preliminary 'smart' matrix sealing efficiency & ohmic resistance in >2,000h cell tests	40%
	Verify "Smart' Matrix durability in >5,000h endurance cell tests	20%
FY2016	Deliver report on degradation mechanistic understanding	10%
	Perform scale-up manufacturing trial and start technology stack	10%

Go/No-Go	Description	Status
FY2015 (9/30/2015)	'Smart' Matrix technical targets verified in <3,000h cell tests	50%
FY2016	Image: Image: Second Secon	
(9/30/2016)	✤ Tech stack ready for start-up	

Achieved High Porosity

Successfully manufactured lab-scale high-porosity 'Smart' Matrix

Verified process consistency and reproducibility (> 20 batches)

Improved 'Smart' Matrix Pore Structure BOL (~600-700h) pore-structure comparison

- **Δ** Achieved significant reduction of pores larger than 0.2μm at BOL
- Endurance cell testing ongoing (>1,000h)

Understanding Matrix Pore-Structure Change

Understanding Stability of Baseline LiAIO₂ Powder Reducing anode atmosphere (absence of electrolyte)

- Investigate reducing atmosphere on powder structure change
 - At extremely low PO₂, color change observed without bulk phase transformation
 - Root cause analysis ongoing
 - Li loss, oxygen vacancy generation, AI/O ratio change, etc.
 - Any relationship with coarsening in presence of electrolyte?

FuelCell Energy Electrolyte basicity strongly affects α -LiAlO₂ stability Ultra-Clean, Efficient, Reliable Power

- ➢ High basicity [O⁻²] (low PCO₂) accelerates coarsening LiAlO₂ + O²⁻ ↔ Li⁺ + AlO₃³⁻
- Mechanistic investigation ongoing

> Any effect of PO₂ and/or $\alpha \rightarrow \gamma$ transformation on coarsening

 $CO_3^{2-} \leftrightarrow CO_2 + O^{2-}$ (basicity)

Photo No. = 3036

Time :10:26:08

name fatt WD = 9 mm

Collaborations: UConn/IIT has significant prior experience and analytical capability

FCE collaborates with subcontractors UConn and IIT to develop fundamental understandings on matrix coarsening and wettability and to help design mitigate approaches

Understand matrix coarsening mechanism & electrolyte retention capability

Challenges	Barrier
Root cause of LiAlO ₂ coarsening in reducing atmosphere	Α
Develop cost-effective mitigation schemes (stabilized support materials)	A, B
Demonstrate 'Smart' Matrix stability in endurance cells (>5,000h)	Α
Manufacture full-size production 'Smart' Matrix and validate in full-area DFC stacks	A, B

Proposed Future Work

Miles	stone Description	Approach	% Complete
Remaining FY2015	Achieve technical targets of BOL mechanical strength and fine-pore structure	 Optimize matrix formulation & processing conditions Develop stabilized materials based on mechanistic understanding 	60
	Verify sealing efficiency and matrix resistance in long- term (>2,000h) cell tests		
FY2016	Verify 'Smart' Matrix durability in endurance cell tests (>5,000h)	 Validate stabilized materials in endurance cells 	
	Deliver report on degradation mechanistic understanding	 Mechanistic understanding Out-of-cell tests Cell post-test analysis 	10
	Perform scale-up manufacturing trial and start technology stack	 Scale-up manufacturing trials 	

Technology Transfer Activities

- FCE plans to further validate developed "Smart" Matrix in endurance technology (30kW) and full-size prototype product stacks tests (>1 year operation)
- Implement "Smart" Matrix in DFC products
 - Enhance DFC market penetration and clean-energy job creation
 - Enable hydrogen production DFC-H₂ system currently under demonstration
 - Enable DFC-CO₂ capture for reducing CO₂ emission

Achieved FY2015 Q1 & Q2 milestones

- Developed test plans for achieving 'Smart' Matrix technical goals and mechanistic understanding
- High-Porosity 'Smart' Matrix
 - Developed slurry formulation and processing parameters to produce lab-scale (9" wide) 'Smart' Matrices with improved fine-particle packing
 - Initiated cell evaluation
 - Met BOL targets of >20% higher porosity and >30% reduction of pores larger than 0.2µm.

Degradation mechanistic understanding

- Identified accelerated coarsening in reducing environment
- Initiated further mechanistic characterization
 - In-cell testing (detailed post-test matrix characterization)
 - Out-of-cell testing (LiAIO₂ powder structure & solubility under various environments)

Technical Back-Up Slides

DFC Product Commercialization

- More than 300 MW capacity installed/backlog.
- Generating power at about 50 locations worldwide.
- Generated >3 billion kWh ultra-clean electricity.
- Annual production run-rate 70 megawatts.

DFC Configuration

Two modules are used for a 2.8 MW power plant

4 stacks are combined to build a 1.4 MW modules

CARBONATE FUEL CELL MATERIALS

Matrix: a key cell component for enabling 80,000h stack life

MO2616BW 042701

- MgO, ZnO, Al₂O₃, CeO₂, SrTiO₃, LiAlO₂, etc. evaluated in early years
- LiAlO₂ selected by developers
 - Three allotropic phases: α,β and γ
 - $-\gamma$ -LiAlO₂ widely used before 2000
 - $-\alpha\text{-LiAlO}_2$ adopted for lower solubility and better phase stability
 - Continue enhancing powder consistency and reducing cost
- Particulate or fiber crack arrestors

Phase	<650°C	>700° C
α-LiAlO ₂	Phase stable	Changes to γ
β -LiAlO 2	Changes to α	Changes to γ
γ -LiAlO 2	Changes to α	Phase stable

- Possible LiAIO₂ Dissolution Mechanism
- Carbonate dissociation: $CO_3^{2-} \leftrightarrow CO_2 + O^{2-}$ (basicity)
- Basic dissolution: $LiAIO_2 + O^{2-} \leftrightarrow Li^+ + AIO_3^{3-}$

≻Higher PCO₂ and lower temperature: lower solubility and slower coarsening

>Solubility $\beta > \gamma > \alpha$

- Additional factors:
- Intermediate phase formation or Li elution
- Agglomeration, non-uniform particle-size distribution

Very limited study on LiAIO₂ coarsening under reducing anode atmosphere