Magnetic Annealing of Pt-alloy Nanostructured Thin Film Catalysts for Enhanced Activity

Project ID: FC121

David A. Cullen

Materials Science and Technology Division Oak Ridge National Laboratory

2015 DOE Hydrogen and Fuel Cells Program Review

June 8, 2015

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start: 10/1/2014

Project End: 9/30/2015

Barriers

Durability

Cost

Performance

Budget

Total DOE Funding: \$300k

ORNL: \$210k

NREL: \$90k

Partners/Collaborators

ORNL: Orlando Rios, Craig Bridges, Harry Meyer III, Khorgolkhuu Odbadrakh

NREL: Shyam Kocha, Jason Zack

3M Company: Andy Steinbach, Dennis van der Vliet

Objective-Relevance

- Explore the potential of high magnetic field annealing to produce highly active surface structures in Pt-alloy oxygen reduction reaction (ORR) catalysts
 - Grain alignment
 - Modification of surface composition
 - Formation of new crystal structures
- Pt₃Ni₇ NSTF as a test structure
 - Ferromagnetic
 - Thin-film like structure
 - High specific activity
 - Further activity gains observed by transformation from nano- to mesostructure

kin (mA cm_{pt}⁻²)

Pt/C

Pt-

poly

D.F. van der Vliet et al., Nat. Mater. 2012, 11, 1051.

PtNi-

Pt-

NSTF

PtNi-NSTF Meso-TF

Background: Magnetic Annealing

Crystallizing ferromagnetic alloy in a magnetic field changes grain morphology (SEM).

Processing steel in a 9 Tesla magnetic field minimizes retained austenite.

High Field Magnetic Processing

- 9T fields produced by superconducting magnets
- Enables quenching, crystallization, annealing, sintering, compacting, extruding, sonicating at high temperature and field.
- Potential Impacts
 - Particle/grain alignment
 - Facilitate phase transformations
 - More homogeneous microstructures
 - Create new structures/compositions

Background: ORNL Houses World-Class R&D Magnetic Processing Facility

- 5" and 8" diameter bore magnets
- Vertical and horizontal geometries
- 9-inch long uniform field zone
- 0 to 9T magnetic field capability
- Operating temperatures 0°C - 2200°C
- Technology is centered around scalability and energy efficiency

World's 1st Commercial–Scale Superconducting, High Field Magnet

Continuous-Feed High & ThermoMagnetic Processing

Approach - High Magnetic Field Annealing

Materials Synthesis

- As-grown Pt₃Ni₇ provided by 3M
- In-house sputtered layers of varying compositions
- Annealing in high magnetic field
 - Performed on NSTF growth substrate
 - Different temperatures and gas environments (H₂, Ar, etc.)

Characterization

- Rotating Disk Electrode (RDE)
- X-ray Photoelectron Spectroscopy (XPS)
- X-ray Diffraction (XRD)
- Transmission Electron Microscopy (TEM)
- **DFT Modeling**
 - Multiple Scattering Theory

Approach- Milestones

Task #	Project Milestones	Туре	Task Completion		
1	Demonstrate magnetic annealing on Pt3Ni7 NSTF-supported catalyst	Quarterly Progress Measure (Regular)	12/31/14	Completed	
2	RDE testing demonstrating impact of magnetic annealing on mass/specific activity	Quarterly Progress Measure (Regular)	3/31/15	Completed	
3	DFT modeling/microstructural characterization identifying modified morphologies responsible for activity changes	Quarterly Progress Measure (Regular)	6/30/15	Started.	
4	Delivery of best-of-class catalyst via magnetic annealing with 1.5 times the mass activity of baseline.	Annual Milestone (Stretch)	9/30/15	Started	

Accomplishment 1: Magnetic Annealing NSTF Rollgood under 100% $\rm H_2$

Magnetic Annealing Experiments

- 3 sample sets produced thus far
- RDE performed on Set 1 and Set 3

Accomplishment 2: RDE Evaluation

- Standardized RDE Protocol
 - Electrolyte: 0.1 M HClO₄
 - Cell Temperature: Room Temp.
 - Break-in: 0.025 1.2 V, 0.5 V/s, 100 cycles, $N_{\rm 2}$
 - CV: 0.025 1.0 V, 0.02 V/s, 3 cycles, $\rm N_2$
 - IV: –0.01 \rightarrow 1.0 V, 0.02 V/s, 1600 rpm, $\mathrm{O_2}$

Ar. 0T

Ar. 9T

H2. 0T

H2.9T

500 0

RAD Pt/C As-grown

OAK RIDGE

Accomplishment 2: RDE Evaluation

Sample ID	Gas	Process Temp (C°)	Magnet (T)	SA (μA/cm ² _{Pt})	MA (mA/mg _{Pt})	ECA (m ² /g _{Pt)}
As-Grown	n/a	n/a	n/a	3310	904	28
Ar, 0T	Ar	400	0	2029	251	12
Ar, 9T	Ar	400	9	1927	316	16
H ₂ , 0T	H ₂	400	0	2791	517	18
H2, 9T	H ₂	400	9	2653	553	24
Annealed Powder	H ₂	400	n/a	1540	186	12
As-Grown Repeat	n/a	n/a	n/a	2774	804	29

- H₂ annealing provides superior activity to annealing in Ar
- Annealing in both Ar and $\rm H_2$ leads to lower ECA and specific activity than as-grown material
 - Opposite trend of results published in literature on annealing NSTF in H₂
 - D.F. van der Vliet et al., Nat. Mater. 2012, 11, 1051.
- Magnetic field yields higher ECA, lower specific activity
- Extended annealing of powder sample yields even lower activities

Accomplishment 3: XRD and XPS

Surface Composition (at.%)							
	Pt	Ni	0	С	Cr	Ν	Ni/P
As Received	9.3	27.8	42.5	20.5	0.0	0.0	3.00
Ar_0T	10.5	12.8	10.0	63.7	0.2	2.8	1.22
Ar_9T	9.0	10.4	10.7	66.9	0.3	2.7	1.15
H2_0T	10.2	21.7	25.0	43.0	0.2	0.0	2.13
H2_9T_mid	10.4	21.5	21.8	45.8	0.5	tr	2.07
H2_9T_edge	11.7	27.5	25.0	35.8	0.0	0.0	2.34

- XPS shows C surface contamination after annealing (perylene-red sublimation)
- Difference in Ni/Pt between Ar and H₂
- Grain size: As-grown-> Ar -> H₂
- Magnetic field yields smaller grains with slightly larger lattice parameter

Sample	Latt. par. (Å)	Grain size (nm)
Pt (lit.)	3.9231	
As-grown Pt ₃ Ni ₇	3.6977	3.8
Ar 9T	3.6894	4.9
Ar 0T	3.6841	5.6
H ₂ 9T	3.6779	5.9
H ₂ 0T	3.6736	6.8

National Laboratory

Accomplishment 4: STEM Analysis

National Laboratory

Accomplishment 4: STEM Analysis

As-grown

H₂, 9T

- Increase in grain size with annealing confirmed in STEM
- No modification to surface structure/composition observed following magnetic annealing

Accomplishment 4: STEM Analysis

As-grown

H₂, 9T, 400°C

H₂, 9T, 240°C

 Modification to surface structure/composition observed at 240°C, but not at 400°C

Accomplishment 5: SKKR-DFT Modeling

- Screened Korringa-Kohn-Rostoker (SKKR) method better represents disordered systems
 - Coherent potential Approximation(CPA)
 - All Electron Method
 - Fully Relativistic anisotropy
 - Spin-orbit coupling

Outputs From First Principles Modeling

- Magnetic and electronic structures at ground state
- d-band shift
- Work function with respect to surface composition
- Energetics with respect to composition variations
- Stability with respect to surface/bulk composition
- Magnetic Phase Diagram
- Surface monolayer magnetism
- Magneto-crystalline anisotropy near the surface

Collaborations

- National Renewal Energy Laboratory (NREL)
 - Shyam Kocha (co-PI)
 - Best Practices and Benchmark Activities for ORR Measurements by the Rotating Disk Electrode Technique (FC111)
 - Jason Zack
 - RDE testing
- 3M Company
 - Andy Steinbach
 - Supplier of Pt₃Ni₇ NSTF materials, helpful discussions on project findings and suggestions for future directions
 - Dennis van der Vliet
 - Guidance on H₂ annealing protocols, catalyst removal from growth substrate, and RDE testing of NSTF

Remaining Challenges and Future Work

- Improve magnetic response of NSTF material
 - Modify heating curves (time, max. temperature, etc.)
 - Generate new catalyst compositions (Pt_{1-x}Ni_x, Pt_{1-x}Co_x)
 - Measure magnetic properties via SQUID
- Characterize post-RDE catalysts
 - Break-in cycles modify composition/structure
 - XRD, XPS, and TEM characterization to be performed after RDE tests
- Durability tests
 - Observe effect of treatments on changes in mass activity, specific activity, and ECA over catalyst lifetime
- Input from Modeling Efforts
 - SKKR-DFT calculations to provide guidance on ideal catalyst compositions and surface structures
- Generate best-of-class catalyst with RDE-determined mass activity exceeding 1.3 A/mg_{Pt}

Summary

- Relevance:
 - Improve performance of alloy cathode catalysts through high field magnetic annealing
- Approach:
 - Study impact of magnetic annealing on Pt₃Ni₇ NSTF model structures, with characterization by RDE, XPS, XRD, and STEM
- Accomplishments:
 - Demonstrated magnetic annealing of Pt₃Ni₇ NSTF in a 9T field at 400°C in Ar and H₂
 - Measured specific activity, electrochemical surface area, and mass activity by RDE
 - Characterized changes in grain size and surface composition using XPS, XRD, and STEM
 - Implemented SKKR method for advanced DFT calculations of disordered alloy catalysts
- Collaborations
 - Worked closely with NREL (RDE testing) and 3M (materials supplier, project guidance)
- Future Work
 - Modify catalyst compositions and annealing protocols to generate new highperformance structures.

