Advanced Hydroxide Conducting Membranes

Yu Seung Kim (yskim@lanl.gov)

Los Alamos National Laboratory

Project ID: FC123

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: August 1 2014
 Project End: July 31 2015
- Percent Complete: 70

Budget

- Total Project Budget (K): 500
- Funding Received in FY 15 (K): 500
- Total DOE Funds Spent (K): 340

No cost share 68% spent as of April 10, 2015

Barriers

- B. Cost
- C. Electrode performance
- A. Durability

Project lead

Los Alamos Nat. Lab.

(Project Management, Ionomer Synthesis, MEA Fabrication and Fuel Cell Testing)

Yu Seung Kim (PI)

Kwan-Soo Lee

Collaborators/Interactions

Subcontractors

- Sandia Nat. Lab. (Membrane Synthesis)
- Lawrence Berkeley Nat. Lab. (Property & Modeling)

Collaborators/Interactions

- Rensselaer Polytech. Institute (Membrane Synthesis)
- Solvay (Material Supply)
- Ion Power (Material Supply)
- IRD Fuel Cell
 (Fuel Cell Testing)
- National Institute of Advanced Industrial Science and Technology (Stability Modeling)

Cy Fujimoto Michael Hibbs

Adam Weber Huai-Suen Shiau Shouwen Shi Ahmet Kusoglu

Chulsung Bae Angela Mohanty

Dan Ireland

Steve Grot

Madeleine Odgaard

Yoong-Kee Choe

Relevance

Objectives

Develop (1) *chemically stable hydroxide-conducting anion exchange membranes* and (2) *solvent processable perfluorinated ionomers* and (3) *modeling approaches (HOR, ORR and polarization behaviors)* to demonstrate high performance/durable alkaline membrane fuel cells.

Technical Barriers

- Low hydroxide conductivity
- Poor cationic functional group & polymer backbone stability
- Mechanical-instability to make thin films
- Low quality perfluorinated ionomer dispersions

Targets and Current Status

Characteristics	Units	2014 status ^a	Target ^b	Current status ^c
Areal resistance	$\Omega \cdot cm^2$	0.17	≤ 0.10	0.06 - 0.08
IEC loss after >100 h 0.5 M NaOH at 80 $^\circ$	%	10	No decrease	No decrease
Peak power density of AEMFC	W/cm ²	580 (14 mg _{Pt} /cm ²)	> 600 (0.4 mg _{Pt} /cm ²)	330 (0.4 mg _{Pt} /cm ²)

^a Y.S. Kim, Resonance-Stabilized Anion Exchange Polymer Electrolytes, US DOE 2014 Annual Merit Review, June, 16-20, 2014 ^b The interim project target was set for general fuel cell applications ^c as of April 10, 2015

Approach: Anion exchange membranes

Polymer Backbone

 Developing polymers without ether or electron-withdrawing groups in the polymer backbone

Aryl-ether cleavage reaction^a

Our approach

- ✓ Ether-free poly(phenylene) (SNL)
- Ether-free polystyrene-bpoly(ethylene-co-butylene)-bpolystyrene (RPI)

Cationic Functional Group

 Replacing benzyl trimethyl ammonium (BTMA) with more alkaline stable cations

S_N2 degradation of BTMA^b

Our approach

- ✓ Hexamethyl ammonium (SNL, RPI)
- Phenyl guanidinium (LANL, SNL)

FY14 LANL Perfluorinated Ionomer*

* D.S. Kim et al. *Macromolecules*, 46, 19, 7826-7833 (2013)

Approach: Performance modeling

D T

Boundary conditions:

- (1) 1 4 no flux for OH^- , CO_3^{-2} and HCO_3^- except for H_2O at boundaries 1 and 2.
- At the boundary 1 (aCL/GDL interface), the water content is fixed at $\lambda = 10$ (2) At the boundary 2 (cCL/GDL interface), $\lambda = 10$ (RH = 100%) or $\lambda = 4$ (RH 40%)

Properties:

- (1) Thickness of aCL and cCL = $10 \mu m$ and that of AEM = $25 \mu m$.
- (2) Cell potential = 0.8 V and T = $80 \degree \text{C}$
- (3) $[CO_2]$ in the aCL and cCL are the same (0.005% to 50% ambient $[CO_2]$) $[CO_2]$ in the AEM is set to be zero (assuming AEM has low CO_2 tolerance). Note: ambient CO_2 pressure = 0.0004 atm (ambient $[CO_2] = 1.6*10^{-5}$ mol/L).
- (4) OH^{-} conductivity = 0.08 S/cm for 100% hydrated AEM.

Electrode kinetics:

$$\begin{array}{ll} @ \text{ anode } & i_a = a_{P_l} i_{0,a} \left(\frac{C_{H_2}}{C_{H_2}^{ref}}\right)^{0.5} y_{OH^-} \exp\left(\frac{\alpha_a \eta_a F}{RT}\right) & \eta_a = -\Phi_e - V_a^{eq} & V_a^{eq} = \frac{RI}{nF} \ln(y_{OH}^2) \\ @ \text{ cathode } & i_c = a_{P_l} i_{0,c} \left(\frac{C_{O_2}}{C_{O_2}^{ref}}\right) \lambda \exp\left(\frac{-\alpha_c \eta_c F}{RT}\right) & \eta_c = \Phi_{cell} - \Phi_e - V_c^{eq} & V_c^{eq} = 1.23 + \frac{RT}{nF} \ln(y_{OH}^2) \\ & a_{P_l} = 10^5 \text{ cm}^{-1} & i_{0,HOR} = i_{0,ORR} = 3 \text{ mA/cm}^2 & C_{H_2} = C_{O_2} = 10 \text{ mol/m}^3 & C_{H_2}^{ref} = 16 \text{ mol/m}^3 \\ \bullet \text{ LATIONAL LAROPATIONS} \end{array}$$

Accomplishments: Synthesized rigid polymers

Accomplishments: Synthesized flexible polymers

Nafion®-FA-TMG Series

- Perfluorinated (PF) control AEM (LANL & SNL)
 - **Progress** Polymer synthesis: 100% Characterizations: 100%

- Guanidinium functionalized stable PF anion exchange polymer
- Strength
 Low water uptake
 Excellent hydrophobicity ideal for ionomeric binder

Weakness Processibility for ionomer dispersion Instability of amide group

- SEBS based AEM (RPI)
- Progress
 Polymer synthesis: 100%
 Characterizations: 80%
- Highly conductive and stable polymers prepared from C-H borylation and coupling reactions
 - **Strength** High conductivity Good polymer stability Mechanical toughness
 - Weakness Processibility for ionomer dispersion Relatively high water uptake

PF Alkyl Amide Series

- PF polymers having alkyl amide group (LANL)
- **Progress** Polymer synthesis: 80% Characterizations: 0%
- PF polymers prepared from new chemistry
- Strength (expected) Better conductivity Good amide stability Improved processibility for ionomer dispersion
- Weakness

For AEM and dispersion appearance: see back-up slides 21, 22

Accomplishments: Membrane conductivity/resistance

BERKELEY LAB

Conductivity Summary

Membrane code	IECª	OH ⁻ cond. ^b	Areal Resistance ^c (film thickness)	
	meq./g	mS/cm	$\Omega \cdot ext{cm}^2$ (μ m)	
ATM-PP	1.7	40	0.17 (60)	
MRH	2.0 - 2.4	40 - 60	0.06-0.08 (30)	
AR	1.9 – 2.1	41 – 54	0.10-0.15 (22)	
SEBS-QA	1.0 – 1.9	29 – 45	0.06-0.07 (35)	

^a by titration; ^b measured at 30°C; ^c measured at 80°C

- Reduced areal resistance of FY 15 AEMs compared with that of ATM-PP control.
- Less resistance variation with current density for MRH and SEBS-QA AEMs, indicating better water management
- Highlight: Achieved FY15 areal resistance milestone (< 0.1 Ω cm²) for MRH and SEBS-QA AEMs

Accomplishments: Membrane mechanical properties

BERKELEY LAB

Summary of Mechanical Properties

Membrane code	Water uptake ^a	Stress ^b	Strain ^b
	(wt. %)	(MPa)	(%)
ATM-PP	83	28	20
MRH	126	28	23
AR	120	36	50
SEBS-QA	220	4	>300

 $^{\rm a}$ measured at 30°C; $^{\rm b}$ Hydroxide form AEMs measured at 50°C, 50% RH

- Improved mechanical properties of AR series AEMs compared with ATM-PP control
- More than 300% strain for SEBS-QA AEMs at 50°C, 50% RH; > 20% strain at 0% RH (Back-up slide 23)
- Durable MEAs could be fabricated from all FY15 AEMs

Sandia National Laboratories

10

Accomplishments: Membrane stability

- Improved alkaline stability of FY15 AEMs compared with ATM-PP control from ex-situ test.
- Confirmed alkaline stability of SEBS-QA AEMs under AMFC operating conditions
- Highlight: Achieved FY 15 stability milestone for AR and SEBS-QA: < 10% loss after 500 h, 0.5M NaOH at 80°C AEMs (May 30, 2015)
- Next step: Complete In-situ and ex-situ life test for MRH, SPG, and AR series AEMs

Accomplishments: Amide group stability of PF polymers

Accomplishments: On-going fuel cell performance test

- Significant AMFC performance depending on ionomer structure; Best performance using MRH ionomers among other hydrocarbon ionomers
- Next step: Fuel cell performance optimization using PF ionomers

Accomplishments: CO₂ effect modeling

Current density @ 0.8 V versus $[CO_2]$

(OH⁻ & CO₃⁻²) mole fraction versus [CO₂]

 Even the small amount of 50% of atmospheric CO₂ concentration (~ 0.02% CO₂) can significantly reduce the current density and deplete the OH⁻ species by CO₃⁻² in the MEA.

Modeling results on CO₂ effect

Experimental results on CO₂ effect

Accomplishments: Potential & water distribution modeling

Electrolyte phase potential distribution along the **MEA** thickness

AFM

OH⁻ transport is governed mainly by migration due to potential gradient. However, there is less variation in the ionic potential across MEA with higher $[CO_2]$, reducing OH⁻ flux.

aCL

 $O_2 + 2H_2O + 4e^- \rightarrow 4OH^ 2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$

cCL

Collaborations/Interactions

Institutions	Туре	Extent	Role and Importance
Los Alamos National Laboratory	Federal Laboratory	Major	 DOE Hydrogen and Fuel Cell Program (Prime) Synthesis and characterization of AEMs and ionomer dispersion Membrane, electrode and fuel cell performance test
Sandia National Laboratories	Federal Laboratory	Major	 DOE Hydrogen and Fuel Cell Program (Sub) Synthesis and characterization of poly(phenylene) AEMs Access to the state-of-the-art poly(phenylene) AEMs
Lawrence Berkeley National Laboratory	Federal Laboratory	Major	 DOE Hydrogen and Fuel Cell Program (Sub) Characterization and modeling of AEMs
Rensselaer Polytechnic Institute	Academia	Major	 RPI Internal Funding (Outside DOE program) Synthesis and characterization of SEBS and poly(biphenylene) AEMs
Solvay/Ion Power	Industry	Medium	 Supply of non-standard PFSA precursors
IRD	Industry	Minor	 DOE Incubator Program 50 cm² MEA testing
National Institute of Advanced Industrial Sci. and Technol.	Foreign National Laboratory	Medium	 LANL Cooperative Research and Development Agreements DFT modeling

Remaining Challenges and Barriers

Membrane

 Alkaline stability: Long term fuel cell performance loss associated with AEMs and possible mitigation strategy should be investigated.

Ionomeric binder

 Quality of ionomer dispersion: Ionomer particle size in liquid dispersion plays major role in interfacial reaction of electro-catalysts. Current ionomer dispersion does not provide best three-phase interface structure in the electrode layer.

Membrane electrode assembly

 Interfacial compatibility: Interfacial compatibility/adhesion between hydrocarbon membrane and PF ionomer-bonded electrode needs to be improved for high AMFC performance.

AMFC performance

- (Bi) carbonate contamination: Performance loss due to (bi) carbonate contamination may be problematic for end-use applications. Mitigation strategy needs to be developed.
- Catalyst HOR activity: Cation adsorption to anode catalysts significantly lowers the overall performance. → leveraged research efforts with DOE Incubator project.
- Non-precious metal catalysts: Extensive works with MEA fabrication and fuel cell testing are required. → leveraged research efforts with DOE Incubator project.
- Water management: Flooding and water management issues may still remain.

Proposed Future Work

Task	Description	Expected completion day
1	Property optimization of AR series AEMs (RPI)	June 30, 2015
2	Synthesis and characterization of sulfone (or ketone) phenyl guanidinium functionalized poly(phenylene) AEM (SNL, LBNL and LANL)	June 30, 2015
3	Development of high quality PF alkyl amide polymer dispersion (LANL)	June 30, 2015
4	AMFC test under O ₂ and air conditions (initial and long- term test) (LANL, IRD)	July 31, 2015
5	Incorporate the GDL and flow channels into the existing AMFC model (LBNL)	July 31, 2015
6	Manuscript submission and Patent filing (RPI, SNL, LBNL, LANL)	October 30, 2015

Summary

- FY15 MRH, AR and SEBS-QA series AEMs showed excellent conductivity, mechanical properties and alkaline stability compared with ATM-PP control.
 - Areal resistance < 0.1 Ω cm² was achieved for MRH and SEBS-QA series AEMs
 - Less than 5% degradation under > 1M KOH at 80°C was achieved for MRH, AR and SEBS-QA series
- FY15 PF ionomer with alkyl amide linkage was designed to increase amide stability under basic conditions; Fuel cell performance measurement using these ionomers is on-going.
- Developed a membrane+electrode model that takes into account the effect of CO₂ contamination on the AMFC performance; Combining with experimental data, benefits of higher temperature operation in the presence of CO₂ was demonstrated.

Technical Back-Up Slides

Solution Cast AEMs

SEBS-QA Series (30 - 50 µm thick)

Obtained thin, tough and uniform thickness membranes from solution cast techniques.

Ionomer Dispersions

Nafion[®]-FA-TMG

(2.5 wt.% dispersion)

Nafion[®]-FA-TMG

(2.5 wt.% dispersion)

ATM-PP

(2.5 wt.% dispersion)

PF Alkyl Amide

(1 wt.% dispersion)

Fine dispersion Particle size < 0.1 µm

Rensselaer

Sandia

National laboratories

MRH (1 wt.% dispersion)

AR (5 wt.% dispersion)

- 1 to 2.5 wt.% anion exchange ionomer dispersions were prepared.
- High quality dispersion using patent pending technology*

*Y.S. Kim, LANL Idea 15-00037

Effect of RH on Mechanical Properties of SEBS-QA AEMs

Cell temperature: 50°C; RH: 0, 50, 90%; Number of samples: 2 Equilibrium time: 0% and 50% RH \rightarrow 40 min; 90% RH \rightarrow 60 min; Load: 0.5 MPa/min; testing time: 2 to 5 hours / sample

 Like other ion exchange membranes, tensile strength increased and elongation at break of SEBS-QA AEMs decreased as RH increased.

Governing equations for ion and water fluxes

 CO_3^{-2} fraction HCO_3^{-1} fraction OH⁻ fraction Electro-neutrality $y_{OH^{-}} = \frac{C_{OH^{-}}}{C}$ $y_{CO_{3}^{-2}} = \frac{C_{CO_{3}^{-2}}}{C}$ $y_{HCO_{3}^{-}} = 1 - y_{OH^{-}} - 2y_{CO_{3}^{-2}}$ $C_{OH^{-}} + 2C_{CO_{3}^{-2}} + C_{HCO_{3}^{-}} = C_{ammonium^{+}} = C_{t}$ $A \equiv OH^{-}$ $B \equiv CO_3^{-2}$ Migration Diffusion Streaming-current $C \equiv HCO_3^-$ **OH** flux $N_A = -D_A C_t \nabla y_A + \frac{F D_A C_t}{PT} y_A \nabla \Phi - \frac{D_A C_t}{PT} y_A \xi_A \nabla \mu_w$ $w \equiv water$ D_i : diffusion coefficient CO_3^{-2} flux $N_B = -D_B C_t \nabla y_B + \frac{2FD_B C_t}{PT} y_B \nabla \Phi - \frac{D_B C_t}{PT} y_B \xi_B \nabla \mu_w$ ξ_i : electro-osmotic drag coefficient $HCO_{3}^{-} \text{ flux } N_{c} = -D_{c}C_{t}\nabla(1-y_{A}-2y_{B}) + \frac{FD_{c}C_{t}}{PT}(1-y_{A}-2y_{B})\nabla\Phi - \frac{D_{c}C_{t}}{PT}(1-y_{A}-2y_{B})\xi_{c}\nabla\mu_{w}$ aCL AEMcCL Electro-osmotic drag **Back diffusion** back diffusion water flux $N_w = (\sum_{i} \xi_i N_i) - D_w C_t \nabla \lambda = \xi_A N_A + \xi_B N_B + \xi_C N_C - D_w C_t \nabla \lambda$ electroosmosis $O_2 + 2H_2O + 4e^- \rightarrow 4OH^ 2H_2 + 4OH^- \rightarrow 4H_2O + 4e^-$ 24